8.若一个等差数列前3项的和为30.最后三项的和为150.且所有项的和为300.则这个数列共有 A.12项 B.11项 C.10项 D.9项 查看更多

 

题目列表(包括答案和解析)

若一个等差数列前3项的和为30,最后三项的和为150,且所有项的和为300,则这个数列有(  )

查看答案和解析>>

若一个等差数列前3项的和为30,最后三项的和为150,且所有项的和为300,则这个数列有(  )
A.12项B.11项C.10项D.9项

查看答案和解析>>

若一个等差数列前3项和为3,最后3项和为30,且所有项的和为99,则这个数列有(  )
A、9项B、12项C、15项D、18项

查看答案和解析>>

已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数y=(
1
2
)x
的图象上,且数列{an} 是a1=1,公差为d的等差数列.
(1)证明:数列{bn} 是等比数列;
(2)若公差d=1,以点Pn的横、纵坐标为边长的矩形面积为cn,求最大的实数t,使cn
1
t
(t∈R,t≠0)对一切正整数n恒成立;
(3)对(2)中的数列{an},对每个正整数k,在ak与ak+1之间插入3k-1个3(如在a1与a2之间插入30个3,a2与a3之间插入31个3,a3与a4之间插入32个3,…,依此类推),得到一个新的数列{dn},设Sn是数列{dn}的前n项和,试探究2008是否为数列{Sn}中的某一项,写出你探究得到的结论并给出证明.

查看答案和解析>>

已知数列{an}满足a1a(a0aN*)a1a2anpan10(p≠0p1nN*)

(1)求数列{an}的通项公式an

(2)若对每一个正整数k,若将ak1ak2ak3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为dk.p的值及对应的数列{dk}

Sk为数列{dk}的前k项和,问是否存在a,使得Sk30对任意正整数k恒成立?若存在,求出a的最大值;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案