15.已知函数则方程的实根个数为 个. 查看更多

 

题目列表(包括答案和解析)

已知函数.

(Ⅰ)若函数依次在处取到极值.求的取值范围;

(Ⅱ)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.

【解析】第一问中利用导数在在处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。

第二问中,利用存在实数,使对任意的,不等式 恒成立转化为,恒成立,分离参数法求解得到范围。

解:(1)

(2)不等式 ,即,即.

转化为存在实数,使对任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,则.

,则,因为,有.

在区间上是减函数。又

故存在,使得.

时,有,当时,有.

从而在区间上递增,在区间上递减.

[来源:]

所以当时,恒有;当时,恒有

故使命题成立的正整数m的最大值为5

 

查看答案和解析>>

已知函数g(x)=g(-x),且其图象与x轴有四个交点,则方程g(x)=0的所有实数根之和为(    )。

查看答案和解析>>

.已知函数的图象关于点对称,且函数为奇函数,则下列结论:(1)点的坐标为;(2)当时,恒成立;(3)关于的方程有且只有两个实根。其中正确结论的题号为(   )

A、(1)(2)       B、(2)(3)        C、(1)(3)     D、(1)(2)(3)

 

 

查看答案和解析>>

.已知函数的图象关于点对称,且函数为奇函数,则下列结论:(1)点的坐标为;(2)当时,恒成立;(3)关于的方程有且只有两个实根。其中正确结论的题号为(  )
A.(1)(2)B.(2)(3)C.(1)(3)D.(1)(2)(3)

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c,
(1)若a>b>0且f(0)=0,证明:函数f(x)有两个零点;
(2)证明:若对,且,则方程必有一实根在区间内。
(3)在(1)的条件下,是否存在m∈R,使得f(m)=-a成立且f(m+3)为正数?证明你的结论。

查看答案和解析>>


同步练习册答案