18. 如图.在四棱锥P-ABCD中.底面是边长为 2的菱形.∠BAD=60°.对角线AC与BD相交于点O.PO⊥底ABCD.,E.F分别是BC.AP的中点. (1)求证:EF∥平面PCD, (2)求二面角A-BP-D的余弦值. 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)

如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.

(Ⅰ)求证:PB平面ADMN;

(Ⅱ)求四棱锥P-ADMN的体积.

 

查看答案和解析>>

(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.

(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.

查看答案和解析>>

(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.

(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.

查看答案和解析>>

(本小题满分12分)如图,在四棱锥P—ABCD中,底面是边长为的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.

(Ⅰ)证明:MN∥平面ABCD;

(Ⅱ) 过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值.

 

查看答案和解析>>

1.    (本小题满分12分)

如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,

(1)    证明:AD⊥平面PAB

(2)    求异面直线PCAD所成的角的大小;

(3)    求二面角P—BD—A的大小.

 

查看答案和解析>>


同步练习册答案