题目列表(包括答案和解析)
(本小题满分12分) 已知为坐标原点,点、分别在轴、轴上运动,且,动点满足,设点的轨迹为曲线,定点,直线交曲线于另外一点.
(1)求曲线的方程;
(2)求面积的最大值.
(本小题满分12分)
已知为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.
(Ⅰ)设函数,试求的伴随向量的模;
(Ⅱ)记的伴随函数为,求使得关于的方程在内恒有两个不相等实数解的实数的取值范围.
(本小题满分12分) 已知两点和分别在直线和上运动,且,动点满足: (为坐标原点),点的轨迹记为曲线. (Ⅰ)求曲线的方程,并讨论曲线的类型; (Ⅱ)过点作直线与曲线交于不同的两点、,若对于任意,都有为锐角,求直线的斜率的取值范围.
(本小题满分12分)已知抛物线:(为正常数)的焦点为,过做一直线交抛物线于,两点,点为坐标原点.
(1)若的面积记为,求的值;
(2)若直线垂直于轴,过点P做关于直线对称的两条直线,分别交抛物线C于M,N两点,证明:直线MN斜率等于抛物线在点Q处的切线斜率.
(本小题满分12分)
已知点C(4,0)和直线 P是动点,作垂足为Q,且设P点的轨迹是曲线M。
(1)求曲线M的方程;
(2)点O是坐标原点,是否存在斜率为1的直线m,使m与M交于A、B两点,且若存在,求出直线m的方程;若不存在,说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com