21. 椭圆的一个焦点是.为坐标原点 (Ⅰ)已知椭圆短袖的两个三等分点与一个焦点构成正三角形.求椭圆的方程, (Ⅱ)设过点的直线交椭圆于两点.若直线绕点任意转动.恒有求的取值范围. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)设b>0,椭圆方程为,抛物线方程为.如图4所示,过点F(0,b+2)作x轴的平行线,与抛物线在

第一象限的交点为G.已知抛物线在点G的切线经

过椭圆的右焦点.

(1)求满足条件的椭圆方程和抛物线方程;

(2)设A,B分别是椭圆长轴的左、右端点,试探究在

抛物线上是否存在点P,使得△ABP为直角三角形?

若存在,请指出共有几个这样的点?并说明理由

(不必具体求出这些点的坐标).

查看答案和解析>>

(本小题满分14分)

已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为3.

(1)求椭圆C的方程;

(2)过椭圆C上的动点P引圆O:的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)已知点是椭圆的右焦点,点分别是轴、轴上的动点,且满足.若点满足

(1)求点的轨迹的方程;

(2)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

(本小题满分14分已知点是椭圆的右焦点,点分别是轴、轴上的动点,且满足.若点满足

(1)求点的轨迹的方程;

(2)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

(本小题满分14分)

已知点是椭圆的右焦点,点分别是轴、轴上的动点,且满足.若点满足

(1)求点的轨迹的方程;

(2)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>


同步练习册答案