存在性探索型 存在性探索型命题是指在一定的条件下.判断某种数学对象是否存在.进行演绎推理.若推出矛盾.则假设不成立.若推出结果.则假设成立.即指定的数学对象存在. 查看更多

 

题目列表(包括答案和解析)

对于函数f(x),如果存在锐角θ使得f(x)的图象绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数f(x)具备角θ的旋转性,下列函数具有角
π
4
的旋转性的是(  )

查看答案和解析>>

在以下区间中,函数f(x)=x3-4x2-x+4不存在零点的区间是(  )

查看答案和解析>>

以下正确命题的个数为(  )
①命题“存在x0∈R,2x0≤0”的否定是:“不存在x0∈R,2x0>0”;
②函数f(x)=x
1
3
-(
1
4
)x
的零点在区间(
1
4
1
3
)
内;
③某班男生20人,女生30人,从中抽取10个人的样本,恰好抽到4个男生、6个女生,则该抽样中女生被抽到的概率大于男生被抽到的概率;
(1-
x
)8
展开式中不含x4项的系数的和为1.

查看答案和解析>>

给出下列四个命题,其中正确的命题的个数为(  )
①命题“存在x0∈R,2x0≤0”的否定是“.对任意的x∈R,2x>0”;
②函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
log2sin
π
12
+log2cos
π
12
=-2;
④[cos(3-2x)]′=-2sin(3-2x).

查看答案和解析>>

(2012•上饶一模)关于x的方程:(x2-1)2-|x2-1|+k=0,给出下列四个命题,其中真命题的个数有(  )
(1)存在实数k,使得方程恰有2个不同的实根
(2)存在实数k,使得方程恰有4个不同的实根
(3)存在实数k,使得方程恰有5个不同的实根
(4)存在实数k,使得方程恰有8个不同的实根.

查看答案和解析>>


同步练习册答案