2 不等式的解法――绝对值不等式[考纲要求]在掌握一元一次与一元二次不等式解法的基础上掌握绝对值不等式解法.[复习建议]掌握绝对值的概念.会把绝对值问题转化为简单的问题,掌握去绝对值的基本方法:找零点分区间讨论法与换元法. 查看更多

 

题目列表(包括答案和解析)

整式不等式的解法:不等式(x2-x)(x-2)3(1-x2)>0的解集是
(-∞,-1)∪(0,1)∪(1,2)
(-∞,-1)∪(0,1)∪(1,2)

查看答案和解析>>

A={x||x-1|<2},B={x|>0},则AB等于

A.{x|-1<x<3}                                                B.{x|x<0或x>2}

C.{x|-1<x<0}                                                 D.{x|-1<x<0或2<x<3}

本题考查含绝对值不等式、分式不等式的解法及集合的运算.在进行集合运算时,把解集标在数轴上,借助图形可直观求解.

查看答案和解析>>

已知关于x的不等式|ax+2|<8的解集为(-3,5),则a=__________.

本题考查含绝对值不等式的解法.

查看答案和解析>>

已知函数=.

(Ⅰ)当时,求不等式 ≥3的解集;

(Ⅱ) 若的解集包含,求的取值范围.

【命题意图】本题主要考查含绝对值不等式的解法,是简单题.

【解析】(Ⅰ)当时,=

≤2时,由≥3得,解得≤1;

当2<<3时,≥3,无解;

≥3时,由≥3得≥3,解得≥8,

≥3的解集为{|≤1或≥8};

(Ⅱ)

∈[1,2]时,==2,

,有条件得,即

故满足条件的的取值范围为[-3,0]

 

查看答案和解析>>

(2010上海文数)2.不等式的解集是        

查看答案和解析>>


同步练习册答案