3 不等式的解法――一次与二次[考纲要求]熟练掌握一元一次与一元二次不等式的解法.[复习建议]掌握不等式的性质.知道解不等式的基本思想:化归与转化.掌握一元一次不等式:ax>b与一元二次不等式的解集规律.掌握解集为R或者是空集的条件:不等式最高次系数a>0 最高次系数 a<0a=0ax>b ax2+bx+c>0 已经转化为一次问题掌握一元二次不等式的解集与一元二次方程解集的关系.会逆用此关系解决问题. 查看更多

 

题目列表(包括答案和解析)

整式不等式的解法:不等式(x2-x)(x-2)3(1-x2)>0的解集是
(-∞,-1)∪(0,1)∪(1,2)
(-∞,-1)∪(0,1)∪(1,2)

查看答案和解析>>

A={x||x-1|<2},B={x|>0},则AB等于

A.{x|-1<x<3}                                                B.{x|x<0或x>2}

C.{x|-1<x<0}                                                 D.{x|-1<x<0或2<x<3}

本题考查含绝对值不等式、分式不等式的解法及集合的运算.在进行集合运算时,把解集标在数轴上,借助图形可直观求解.

查看答案和解析>>

已知关于x的不等式|ax+2|<8的解集为(-3,5),则a=__________.

本题考查含绝对值不等式的解法.

查看答案和解析>>

已知函数=.

(Ⅰ)当时,求不等式 ≥3的解集;

(Ⅱ) 若的解集包含,求的取值范围.

【命题意图】本题主要考查含绝对值不等式的解法,是简单题.

【解析】(Ⅰ)当时,=

≤2时,由≥3得,解得≤1;

当2<<3时,≥3,无解;

≥3时,由≥3得≥3,解得≥8,

≥3的解集为{|≤1或≥8};

(Ⅱ)

∈[1,2]时,==2,

,有条件得,即

故满足条件的的取值范围为[-3,0]

 

查看答案和解析>>

解关于x的不等式|2x+m|<xm(x∈R).

本题考查含有绝对值不等式的解法.解题关键是对m进行分类讨论.

查看答案和解析>>


同步练习册答案