给出下列命题: 查看更多

 

题目列表(包括答案和解析)

给出下列命题:
①若a,b∈R+,a≠b则a3+b3>a2b+ab2
②若a,b∈R+,a<b,则
a+m
b+m
a
b

③若a,b,c∈R+,则
bc
a
+
ac
b
+
ab
c
≥a+b+c

④若3x+y=1,则
1
x
+
1
y
≥4+2
3

其中正确命题的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

给出下列命题:
(1)存在实数x,使sinx+cosx=
3
2

(2)若α,β是第一象限角,且α>β,则cosα<cosβ;
(3)函数y=sin(
2
3
x+
π
2
)
是偶函数;
(4)函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是周期为
π
2
的偶函数.
(5)函数y=cos(x+
π
3
)
的图象是关于点(
π
6
,0)
成中心对称的图形
其中正确命题的序号是
 
 (把正确命题的序号都填上)

查看答案和解析>>

给出下列命题:
①|
a
-
b
|≤|
a
|-|
b
|;②
a
b
共线,
b
c
平,则
a
c
为平行向量;③
a
b
c
为相互不平行向量,则(
b
-
c
a
-(
c
-
a
b
c
垂直;④在△ABC中,若a2taanB=b2tanA,则△ABC一定是等腰直角三角形;⑤
a
b
=
a
c
,则
a
⊥(
b
-
c
)   
其中错误的有
 

查看答案和解析>>

给出下列命题:
①存在实数α使sinα•cosα=1成立;
②存在实数α使sinα+cosα=
3
2
成立;
③函数y=sin(
2
-2x)
是偶函数;
x=
π
8
是函数y=sin(2x+
4
)
的图象的一条对称轴的方程;
⑤在△ABC中,若A>B,则sinA>sinB.
其中正确命题的序号是
 
(注:把你认为正确的命题的序号都填上).

查看答案和解析>>

2、给出下列命题:
(1)直线a与平面α不平行,则a与平面α内的所有直线都不平行;
(2)直线a与平面α不垂直,则a与平面α内的所有直线都不垂直;
(3)异面直线a、b不垂直,则过a的任何平面与b都不垂直;
(4)若直线a和b共面,直线b和c共面,则a和c共面.其中错误命题的个数为
3

查看答案和解析>>

一、选择题(本大题共12小题,每小题4分,共48分)

1.B    2.A    3.B    4.A     5.D     6.C

7.C    8.A    9.B    10.D    11.D   12.B   

二、填空题(本大题共4小题,每小题4分,共16分)

13.   14.增函数的定义     15.与该平面平行的两个平面    16.

三、解答题(本大题共3小题,每小题12分,共36分)

17.(本小题满分12分)

解:(Ⅰ)由,可得

由题设可得     即

解得

所以.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)由题意得

所以

,得

 

 

所以函数的单调递增区间为.┄┄┄┄┄┄┄┄┄┄12分

18A. (本小题满分12分)

解:(Ⅰ)

.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根据计算结果,可以归纳出 .

时,,与已知相符,归纳出的公式成立.

假设当)时,公式成立,即

那么,

所以,当时公式也成立.

综上,对于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄┄12分

18B. (本小题满分12分)

解:(Ⅰ),因为

所以

,解得

同理.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分

(Ⅱ)根据计算结果,可以归纳出 .

时,,与已知相符,归纳出的公式成立.

假设当)时,公式成立,即.

可得,.

.

所以.

即当时公式也成立.

综上,对于任何都成立. ┄┄┄┄┄┄┄┄┄┄┄12分

19A. (本小题满分12分)

(Ⅰ)解:的定义域为

的导数.

,解得;令,解得.

从而单调递减,在单调递增.

所以,当时,取得最小值. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 6分

(Ⅱ)依题意,得上恒成立,

即不等式对于恒成立.

.

时,因为

上的增函数,   所以 的最小值是

从而的取值范围是. ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12分

19B. (本小题满分12分)

解:(Ⅰ)由于

时,

,可得.

时,

可知

所以函数的单调减区间为. ………………………………………………6分

(Ⅱ)设

时,

,可得,即

,可得.

可得为函数的单调增区间,为函数的单调减区间.

时,

所以当时,

可得为函数的单调减区间.

所以函数的单调增区间为,单调减区间为.

函数的最大值为

    要使不等式对一切恒成立,

对一切恒成立,

可得的取值范围为. ………………………………………………12分

 


同步练习册答案