设函数=.其中a是实数.如果当x∈时.有意义.求实数a 的取值范围. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,有f(x)=ax+lnx(其中e为自然对数的底,a∈R).
(1)求函数f(x)的解析式;
(2)设g(x)=
ln|x|
|x|
,x∈[-e,0)∪(0,e],求证:当a=-1时,|f(x)|>g(x)+
1
2

(3)试问:是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然对数的底数,a∈R).
(1)求f(x)的解析式;
(2)设a=-1,g(x)=-
lnx
x
,求证:当x∈(0,e]时,f(x)<g(x)+
1
2
恒成立;
(3)是否存在负数a,使得当x∈(0,e]时,f(x)的最大值是-3?如果存在,求出实数a的值;如果不存在,请说明理由.
理科选修.

查看答案和解析>>

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e为自然对数的底,a∈R).
(1)求函数f(x)的解析式;
(2)是否存在负实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出负实数a的值;如果不存在,请说明理由.
(3)设g(x)=
ln|x|
|x|
(x∈[-e,0)∪(0,e])
,求证:当a=-1时,|f(x)|>g(x)+
1
2

查看答案和解析>>

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然界对数的底,a∈R)
(1)求f(x)的解析式;
(2)设,求证:当a=-1时,
(3)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.

查看答案和解析>>

已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然对数的底数,a∈R).
(1)求f(x)的解析式;
(2)设a=-1,,求证:当x∈(0,e]时,恒成立;
(3)是否存在负数a,使得当x∈(0,e]时,f(x)的最大值是-3?如果存在,求出实数a的值;如果不存在,请说明理由.
理科选修.

查看答案和解析>>


同步练习册答案