⑴如果.求函数f(x)的表达式. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)的图象在[a,b]上连续不断,定义:
f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),
f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),
其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值。若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,6]上的“k阶收缩函数”。 (Ⅰ)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(Ⅱ)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(Ⅲ)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.

(1)已知函数f(x)=2sinx,x∈[0,],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;

(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.

(1)已知函数f(x)=2sinx,x∈[0,],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;

(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

已知函数f(x)的图象在[a,b]上连续不断,定义:

其中,min{f(x)|x∈D}表示函数f(x)在区间上的最小值,max{f(x)|x∈D}表示函数f(x)在区间上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数为区间[a,b]上的“k阶收缩函数”.

(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;

(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出相应的k;如果不是,请说明理由;

(3)已知b>0函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

如图是求函数y=f(x)值的一个程序框图.
(1)请根据程序框图写出这个函数y=f(x)的表达式;
(2)请根据右图程序框图,写出该算法相应的程序;
(3)当输出的结果为4时,求输入的x的值.

查看答案和解析>>


同步练习册答案