(6) (7) (8) 40 (9) (10) 0.792(11) 8 或 1 (12) 0 (13) 1 (14)600二 解答题15 题 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根据表格提供的数据求函数f(x)的一个解析式.
(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为
3
,当x∈[0,
π
3
]
时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

非零自然数列有一个有趣的现象:
①1+2=3,②4+5+6=7+8,③9+10+11+12=13+14+15,….按照这样的规律,则2012在第
44
44
个等式中.

查看答案和解析>>

(2007•闵行区一模)已知函数f(x)=Asin(ωx+φ)+B(A>0,0<ω<2,|φ|<
π
2
)
的一系列对应值如下表:
x -
π
6
π
3
6
3
11π
6
3
17π
6
y -1 1 3 1 -1 1 3
(1)根据表格提供的数据求函数y=f(x)的解析式;
(2)(文)当x∈[0,2π]时,求方程f(x)=2B的解.
(3)(理)若对任意的实数a,函数y=f(kx)(k>0),x∈(a,a+
3
]
的图象与直线y=1有且仅有两个不同的交点,又当x∈[0,
π
3
]
时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围.

查看答案和解析>>

把-1125°化为2kπ+α(k∈Z,0≤α<2π)的形式是(  )

查看答案和解析>>

某研究机构为了研究人的脚的大小与身高之问的关系,随机抽测了20人,得到如下数据:
序号 1 2 3 4 5 6 7 8 9 10
身高x(厘米) 192 164 172 177 176 159 171 166 182 166
脚长y(码) 48 38 40 43 44 37 40 39 46 39
序号 11 12 13 14 15 16 17 18 19 20
身高x(厘米) 169 178 167 174 168 179 165 170 162 170
脚长y(码) 43 41 40 43 40 44 38 42 39 41
(Ⅰ)若“身高大于l75厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成下面的2×2列联表:
    高个   非高个     合计
大脚
非大脚     12
合计     20
(Ⅱ)根据题(I)中表格的数据,若按99%的可靠性要求,能否认为脚的大小与身高之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有数字1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号.试求:①抽到12号的概率;②抽到“无效序号(超过20号)”的概率.

查看答案和解析>>


同步练习册答案