对l≠0的任何实数值.双曲线与都有相同的:①焦点,②准线,③渐近线,④离心率. 以上四个结论中.正确的------------------( )(A)①② (B)③④ (C)①③ (D)②④ 查看更多

 

题目列表(包括答案和解析)

已知直线l1:mx-y=0,l2:x+my-m-2=0
(1)求证:直线l2恒过定点,并求定点坐标;
(2)求证:对m的任意实数值,l1和l2的交点M总在一个定圆上;
(3)若l1与定圆的另一个交点为P1,l2与定圆的另一个交点为P2,求当实数m取值变化时,△MP1P2面积取得最大值时,直线l1的方程.

查看答案和解析>>

已知直线l1:mx-y=0,l2:x+my-m-2=0
(1)求证:直线l2恒过定点,并求定点坐标;
(2)求证:对m的任意实数值,l1和l2的交点M总在一个定圆上;
(3)若l1与定圆的另一个交点为P1,l2与定圆的另一个交点为P2,求当实数m取值变化时,△MP1P2面积取得最大值时,直线l1的方程.

查看答案和解析>>

已知直线l1:mx-y=0,l2:x+my-m-2=0
(1)求证:直线l2恒过定点,并求定点坐标;
(2)求证:对m的任意实数值,l1和l2的交点M总在一个定圆上;
(3)若l1与定圆的另一个交点为P1,l2与定圆的另一个交点为P2,求当实数m取值变化时,△MP1P2面积取得最大值时,直线l1的方程.

查看答案和解析>>

已知直线l1:mx-y=0,l2:x+my-m-2=0
(1)求证:直线l2恒过定点,并求定点坐标;
(2)求证:对m的任意实数值,l1和l2的交点M总在一个定圆上;
(3)若l1与定圆的另一个交点为P1,l2与定圆的另一个交点为P2,求当实数m取值变化时,△MP1P2面积取得最大值时,直线l1的方程.

查看答案和解析>>

下列命题是真命题的序号为:
③④⑤
③④⑤

①定义域为R的函数f(x),对?x∈R都有f(x-1)=f(1-x),则f(x-1)为偶函数
②定义在R上的函数y=f(x),若对?x∈R,都有f(x-5)+f(1-x)=2,则函数y=f(x)的图象关于(-4,2)中心对称
③函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则f(x+1949)是奇函数
④函数f(x)=ax3+bx2+cx+d(a≠0)的图形一定是对称中心在图象上的中心对称图形.
⑤若函数f(x)=ax3+bx2+cx+d有两不同极值点x1,x2,若|x2-x1|>|f(x2)-f(x1)|,且f(x1)=x1,则关于x的方程3a•[f(x)]2+2b•f(x)+c=0的不同实根个数必有三个.

查看答案和解析>>


同步练习册答案