题目列表(包括答案和解析)
(本小题满分12分)
已知椭圆C的左、右焦点坐标分别是,,离心率是,直线椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P。
(1)求椭圆C的方程;
(2)若圆P经过原点,求的值;
(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值。
(本小题满分12分)
已知,椭圆C过点A,两个焦点为(-1,0),(1,0)。
(1) 求椭圆C的方程;
(2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
(本小题满分12分)
已知椭圆(a>b>0)的离心率为,以原点为圆心。椭圆短半轴长半径的
圆与直线y=x+2相切,
(Ⅰ)求a与b;w.w.w.k.s.5.u.c.o.m
(Ⅱ)设该椭圆的左,右焦点分别为和,直线过且与x轴垂直,动直线与y轴垂直,交与点p..求线段P垂直平分线与的交点M的轨迹方程,并指明曲线类型。
(本小题满分12分)
已知半圆,动圆与此半圆相切且与轴相切。
(1)求动圆圆心的轨迹,并画出其轨迹图形;
(2)是否存在斜率为的直线,它与(1)中所得轨迹的曲线由左到右顺次交于A、B、C、D四点,且满足。若存在,求出的方程;若不存在,说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com