(Ⅰ)试判断函数在[1.3]上是不是有界函数?请给出证明, 查看更多

 

题目列表(包括答案和解析)

设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0.
(1)求f(
1
2
)
的值,试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(2)一个各项均为正数的数列{an},它的前n项和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求数列{an}的通项公式;
(3)在(2)的条件下,是否存在实数M,使2na1a2an≥M•
2n+3
•(2a1-1)•(2a2-1)…(2an-1)
对于一切正整数n均成立?若存在,求出M的范围;若不存在,请说明理由.

查看答案和解析>>

设函数f(x)=x-
ax

(1)判断函数f(x)的奇偶性;
(2)若a=-9,试证明函数f(x)在[3,+∞]是单调递增函数;
(3)若不等式f(x)≥1在x∈(0,2]上恒成立,试求实数a的取值范围.

查看答案和解析>>

设函数f(x)的定义域为R,当x<0时,0<f(x)<1,且对于任意的实数x、y∈R,都有f(x+y)=f(x)f(y).
(1)求f(0);
(2)试判断函数f(x)在[0,+∞)上是否存在最小值,若存在,求该最小值;若不存在,说明理由;
(3)设数列{an}各项都是正数,且满足a1=f(0),f(
a
2
n+1
-
a
2
n
)=
1
f(-an+1-an)
(n∈N*),又设bn=(
1
2
)an
,Sn=b1+b2+…+bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,当n≥2时,试比较Sn与Tn的大小,并说明理由.

查看答案和解析>>

设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)<0,试判断函数单调性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围;
(3)若f(1)=,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)<0,试判断函数单调性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范围;
(3)若f(1)=,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>

一、选择题(本大题共8小题,每小题5分,共40分)

1.B   2. C  3. D    4.C   5.B   6.D   7.A   8. B.

 

二、填空题(本大题共6小题,每小题5分,共30分)

9.; 10.(-1,2); 11.0;  12.(或);

13.(1);(2)16;(3).

三、解答题(本大题共6小题,共80分)

14.(本小题满分12分)

解:(Ⅰ)∵

时,其图象如右图所示.---4分

(Ⅱ)函数的最小正周期是,其单调递增区间是;由图象可以看出,当时,该函数的最大值是.--------------7分

(Ⅲ)若x是△ABC的一个内角,则有,∴

,得

 ∴,故△ABC为直角三角形. --------------12分

15.(本小题满分12分)

解:(Ⅰ)

       --------6分

(Ⅱ)当时,

 ----------12分

 

16.(本小题满分14分)

解:(Ⅰ)该几何体的直观图如图1所示,它是有一条

侧棱垂直于底面的四棱锥. 其中底面ABCD是边长为6的

正方形,高为CC1=6,故所求体积是

       ------------------------4分

 (Ⅱ)依题意,正方体的体积是原四棱锥体积的3倍,

故用3个这样的四棱锥可以拼成一个棱长为6的正方体,

其拼法如图2所示. ------------------------6分

   证明:∵面ABCD、面ABB1A1、面AA1D1D为全等的

正方形,于是

  故所拼图形成立.---8分

(Ⅲ)方法一:设B1E,BC的延长线交于点G,

 连结GA,在底面ABC内作BH⊥AG,垂足为H,

连结HB1,则B1H⊥AG,故∠B1HB为平面AB1E与

平面ABC所成二面角或其补角的平面角. --------10分

  在Rt△ABG中,,则

,故平面AB1E与平面ABC所成二面角的余弦值为.---14分

   方法二:以C为原点,CD、CB、CC1所在直线分别为x、y、z轴建立直角坐标系(如图3),∵正方体棱长为6,则E(0,0,3),B1(0,6,6),A(6,6,0).

 设向量n=(x,y,z),满足n⊥,n⊥

于是,解得.       --------------------12分

  取z=2,得n=(2,-1,2). 又(0,0,6),

故平面AB1E与平面ABC所成二面角的余弦值为. ----------------14分

 

17.(本小题满分14分)

解:分别记该考生考上第1、2、3批分数线为事件A、B、C,被相应志愿录取为事件Ai、Bi、Ci,(i=a、b), 则以上各事件相互独立.  -------------------------------------2分

(Ⅰ)“该考生被第2批b志愿录取”包括上第1批分数线和仅上第2批分数线两种情况,故所求概率为

     

.  -----------------------------------------------------------------------------------6分

(Ⅱ)设该考生所报志愿均未录取的概率为,则

           

          

         .

     ∴该考生能被录取的概率为. ------------10分

表 二

批次

a

b

第2批

0.9

0.05

第3批

0.048

0.0020

从表中可以看出,该考生被第2批a志愿录取的概率最大,故最有可能在第2批a志愿被录取. ------14分

 

18.(本小题满分14分)

解:(Ⅰ)∵,当时,.

     ∴在[1,3]上是增函数.---------------------------------3分

     ∴当时,,即 -2≤≤26.

      ∴存在常数M=26,使得,都有≤M成立.

       故函数是[1,3]上的有界函数.---------------------------6分

(Ⅱ)∵. 由≤1,得≤1

   ∴ 

       令,则.

      当时,有

在[0,+∞上单调递减.   -------------------------------10分

故当t=0 时,有

,当t→+∞时,→0,

,从而有≤0,且.  ∴0≤a≤1;                               故所求a的取值范围为0≤a≤1.---------------------------------------------14分

 

19.(本小题满分14分)

解:(Ⅰ)易知,椭圆的半焦距为:

 又抛物线的准线为:.

设双曲线M的方程为,依题意有

,又.

∴双曲线M的方程为. ------------------------4分

(Ⅱ)设直线与双曲线M的交点为两点

联立方程组 消去y得 

两点的横坐标是上述方程的两个不同实根, ∴

,从而有

.

.

① 若,则有 ,即 .

∴当时,使得. -----------------------------8分

② 若存在实数,使A、B两点关于直线对称,则必有

因此,当m=0时,不存在满足条件的k;------------------------------------10分

时,由

  

∵A、B中点在直线上,

代入上式得

;又, ∴

代入并注意到,得 .

∴当时,存在实数,使A、B两点关于直线对称.--14分

如上各题若有其它解法,请评卷老师酌情给分.

 

 

 

 


同步练习册答案