题目列表(包括答案和解析)
1 | 2 |
1 | 2 |
1 | 2 |
高三(1)班的一个研究性学习小组在网上查知,某珍稀植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性实验,
(Ⅰ)第一小组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;
(Ⅱ)第二小组做了若干次发芽实验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但发芽实验的次数最多不超过5次,求第二小组所做种子发芽实验的次数的概率分布列和期望
(2)设离散型随机变量ξ可能取的值为x1,x2,…,xi,…,ξ取每一个值xi(i=1,2,…,n,…)的概率P(ξ=xi)=pi,则称表
ξ | x1 | x2 | … | xi | … |
P | p1 | ____ | … | ____ | … |
? 为随机变量ξ的概率分布.具有性质:①pi______,i=1,2,…,n,…;②p1+p2+…+pn+…=_________.
离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率_______.?
(3)二项分布:如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(ξ=k)=_______,其中k=0,1,2,3,…,n,q=1-p.于是得到随机变量ξ的概率分布如下:
ξ | 0 | 1 | … | k | … | n |
P | p0qn | C1np1qn-1 | … | ____ | … | pnq0 |
由于pkqn-k恰好是二项展开式(q+p)n=p0qn+p1qn-1+…+________+…+pnq0中的第k+1项(k=0,1,2,…,n)中的各个值,故称为随机变量ξ的二项分布,记作ξ~B(n,p).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com