-2, (C), (D)1或. 查看更多

 

题目列表(包括答案和解析)

(08年新建二中模拟文) (12分)    已知是定义在R上的函数,其图象交x轴于ABC三点.若点B的坐标为 (2,0),且f (x) 在[-1,0]和[4,5]上有相同的单调性,在[0,2]和[4,5]上有相反的单调性.
  (1)求c的值;
  (2)在函数f (x)的图象上是否存在一点M(x0y0),使得f (x)在点M的切线斜率为3b?若存在,求出点M的坐标;若不存在,请说明理由;
  (3)求| AC |的取值范围.

查看答案和解析>>

(18)

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点。

(1)求证:AB1⊥面A1BD;

(2)求二面角A-A1D-B的大小;

(3)求点C到平面A1BD的距离。

查看答案和解析>>

(20)

如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且

(1)求动点P的轨迹C的方程;

(2)过点F的直线交轨迹C于A、B两点,交直线l于点M,已知,,求的值。

查看答案和解析>>

(12分)A、B、C为△ABC的三内角,且其对边分别为abc.若=(-cos,sin),=(cos,sin),且·

  (1)求A;

  (2)若a=2,三角形面积S,求b+c的值.

查看答案和解析>>

 (12′)设A={x|x2-ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}

   (1)A∩B=A∪B,求a的值;

   (2)ФA∩B ,且A∩C=Ф,求a的值(注:应为≠的上下合成);

   (3) A∩B=A∩C≠Ф,求a的值.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

一、选择题

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B

B

A

B

D

B

C

C

A

B

C

A

C

D

C

 

二、填空题

16.;17.;18等边三角形;19.3;20.①②④

三、解答题

21解(I)由题意及正弦定理,得  ①,

  ②,………………1分

两式相减,得.  …………………2分

(II)由的面积,得,……4分

由余弦定理,得                            ……………5分

所以. …………6分

22 .解:(Ⅰ)      ……2分

(Ⅱ)   

∴数列从第10项开始小于0                ……4分

(Ⅲ)

23解:(Ⅰ)由

即:

…………2分

…………4分

(Ⅱ)利用余弦定理可解得: 

      ,∵,故有…………7分

24解:(I)设等比数列{an}的公比为q, 则q≠0, a2= = , a4=a3q=2q

  所以 + 2q= ,     解得q1= , q2= 3,            …………1分

  当q1=, a1=18.所以 an=18×( )n-1= = 2×33-n.

  当q=3时, a1= ,所以an=×=2×3n-5.         …………3分

(II)由(I)及数列公比大于,得q=3,an=2×3n-5 ,…………4分

    

(常数),  

所以数列为首项为-4,公差为1的等差数列,……6分  

.     …………7分

25.解:(Ⅰ)  n=1时      ∴

n=2时         ∴

n=3时     ∴       …………2分

(Ⅱ)∵   ∴

两式相减得:   即

也即

    ∴  即是首项为2,公差为4的等差数列

          …………5分

(Ⅲ)

   …………7分

对所有都成立   ∴  即

故m的最小值是10       …………8分

 

 


同步练习册答案