设.那么数列a.b.c是 ( )(A) 是等差数列但不是等比数列 (B) 是等比数列但不是等差数列(C) 既是等比数列又是等差数列 (D) 既不是等比数列又不是等差数列 查看更多

 

题目列表(包括答案和解析)

设a、b、c是△ABC的三个内角A、B、C所对的边(a≠c),且lgsinA、lgsinB、lgsinC成等差数列,那么直线(cosAcosC+cos2B)x-ysinA+a=0与直线(1+cosB)x+ysinC-c=0的位置关系是(  )

查看答案和解析>>

设a、b、c是△ABC的三个内角A、B、C所对的边(a≠c),且lgsinA、lgsinB、lgsinC成等差数列,那么直线(cosAcosC+cos2B)x-ysinA+a=0与直线(1+cosB)x+ysinC-c=0的位置关系是( )
A.平行
B.垂直
C.相交但不垂直
D.重合

查看答案和解析>>

设a、b、c是△ABC的三个内角A、B、C所对的边(a≠c),且lgsinA、lgsinB、lgsinC成等差数列,那么直线(cosAcosC+cos2B)x-ysinA+a=0与直线(1+cosB)x+ysinC-c=0的位置关系是


  1. A.
    平行
  2. B.
    垂直
  3. C.
    相交但不垂直
  4. D.
    重合

查看答案和解析>>

设a、b、c是△ABC的三个内角A、B、C所对的边(),且lgsinA、lgsinB、lgsinC成等差数列,那么直线与直线的位置关系是                              (      )

A.平行                B.垂直          C.相交但不垂直     D.重合

查看答案和解析>>

 设a、b、c是△ABC的三个内角A、B、C所对的边(),且lgsinA、lgsinB、lgsinC成等差数列,那么直线与直线的位置关系是                              (      )

A.平行              B.垂直          C.相交但不垂直     D.重合

 

查看答案和解析>>

一、选择题

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B

B

A

B

D

B

C

C

A

B

C

A

C

D

C

 

二、填空题

16.;17.;18等边三角形;19.3;20.①②④

三、解答题

21解(I)由题意及正弦定理,得  ①,

  ②,………………1分

两式相减,得.  …………………2分

(II)由的面积,得,……4分

由余弦定理,得                            ……………5分

所以. …………6分

22 .解:(Ⅰ)      ……2分

(Ⅱ)   

∴数列从第10项开始小于0                ……4分

(Ⅲ)

23解:(Ⅰ)由

即:

…………2分

…………4分

(Ⅱ)利用余弦定理可解得: 

      ,∵,故有…………7分

24解:(I)设等比数列{an}的公比为q, 则q≠0, a2= = , a4=a3q=2q

  所以 + 2q= ,     解得q1= , q2= 3,            …………1分

  当q1=, a1=18.所以 an=18×( )n-1= = 2×33-n.

  当q=3时, a1= ,所以an=×=2×3n-5.         …………3分

(II)由(I)及数列公比大于,得q=3,an=2×3n-5 ,…………4分

    

(常数),  

所以数列为首项为-4,公差为1的等差数列,……6分  

.     …………7分

25.解:(Ⅰ)  n=1时      ∴

n=2时         ∴

n=3时     ∴       …………2分

(Ⅱ)∵   ∴

两式相减得:   即

也即

    ∴  即是首项为2,公差为4的等差数列

          …………5分

(Ⅲ)

   …………7分

对所有都成立   ∴  即

故m的最小值是10       …………8分

 

 


同步练习册答案