设{an}是正数组成的数列.其前n项和为Sn.并且对于所有的n N+.都有.(Ⅰ)写出数列{an}的前3项,(Ⅱ)证明数列{an}是等差数列.并求其通项公式, 查看更多

 

题目列表(包括答案和解析)

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.
(1)写出数列{an}的前3项;
(2)求数列{an}的通项公式(写出推证过程);
(3)令bn=
1
2
(
an+1
an
+
an
an+1
)(n∈N)
,求
lim
n→∞
(b1+b2+…+bn-n)

查看答案和解析>>

设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有4Sn=(an+1)2
(I)求a1,a2的值;
(II)求数列{an}的通项公式;
(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求{bn}的前20项和T20

查看答案和解析>>

设{an}是正数组成的数列,其前n项和为Sn,且对于所有的正整数n,有2
Sn
=an+1

(I)求a1,a2的值;
(II)求数列{an}的通项公式;
(III)令b1=1,b2k=a2k-1+(-1)k,b2k+1=a2k+3k(k=1,2,3,…),求数列{bn}的前2n+1项和T2n+1

查看答案和解析>>

设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,都有8Sn=(an+2)2
(1)写出数列{an}的前3项;
(2)求数列{an}的通项公式(写出推证过程);
(3)设bn=
4
anan+1
,Tn是数列{bn}的前n项和,求使得Tn
m
20
对所有n∈N+都成立的最小正整数m的值.

查看答案和解析>>

设{an } 是正数组成的数列,其前n项和为Sn,,所有的正整数n,满足
an+2
2
=
2S n

(1)求a1、a2、a3;    
(2)猜想数列{an }的通项公式,并用数学归纳法证明.

查看答案和解析>>

一、选择题

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B

B

A

B

D

B

C

C

A

B

C

A

C

D

C

 

二、填空题

16.;17.;18等边三角形;19.3;20.①②④

三、解答题

21解(I)由题意及正弦定理,得  ①,

  ②,………………1分

两式相减,得.  …………………2分

(II)由的面积,得,……4分

由余弦定理,得                            ……………5分

所以. …………6分

22 .解:(Ⅰ)      ……2分

(Ⅱ)   

∴数列从第10项开始小于0                ……4分

(Ⅲ)

23解:(Ⅰ)由

即:

…………2分

…………4分

(Ⅱ)利用余弦定理可解得: 

      ,∵,故有…………7分

24解:(I)设等比数列{an}的公比为q, 则q≠0, a2= = , a4=a3q=2q

  所以 + 2q= ,     解得q1= , q2= 3,            …………1分

  当q1=, a1=18.所以 an=18×( )n-1= = 2×33-n.

  当q=3时, a1= ,所以an=×=2×3n-5.         …………3分

(II)由(I)及数列公比大于,得q=3,an=2×3n-5 ,…………4分

    

(常数),  

所以数列为首项为-4,公差为1的等差数列,……6分  

.     …………7分

25.解:(Ⅰ)  n=1时      ∴

n=2时         ∴

n=3时     ∴       …………2分

(Ⅱ)∵   ∴

两式相减得:   即

也即

    ∴  即是首项为2,公差为4的等差数列

          …………5分

(Ⅲ)

   …………7分

对所有都成立   ∴  即

故m的最小值是10       …………8分

 

 


同步练习册答案