取AE的中点Q,连结FQ,则. 查看更多

 

题目列表(包括答案和解析)

本小题满分14分

正方形的边长为1,分别取边的中点,连结,   

为折痕,折叠这个正方形,使点重合于一点,得到一   

个四面体,如下图所示。

 

 

 

 

 


   

(1)求证:

(2)求证:平面

 

查看答案和解析>>

如图,在正三棱柱ABC-A1B1C1中,E∈BB1截面A1EC⊥侧面AC1.

(Ⅰ)求证:BE=EB1;

(Ⅱ)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.

注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).

(Ⅰ)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.

① ∵                                     

 ∴EG⊥侧面AC1;取AC的中点F,连结BF,FG,由AB=BC得BF⊥AC,

② ∵                             

 ∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.

③ ∵                      

 ∴BE∥FG,四边形BEGF是平行四边形,BE=FG,

④ ∵                            

 ∴FG∥AA1,△AA1C∽△FGC,

⑤ ∵                    

,故

查看答案和解析>>

如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将折起,使得B与C重合于O.

(Ⅰ)设Q为AE的中点,证明:QDAO;

(Ⅱ)求二面角O—AE—D的余弦值.

【解析】第一问中,利用线线垂直,得到线面垂直,然后利用性质定理得到线线垂直。取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

第二问中,作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

(1)取AO中点M,连接MQ,DM,由题意可得:AOEO, DOEO,

AO=DO=2.AODM

因为Q为AE的中点,所以MQ//E0,MQAO

AO平面DMQ,AODQ

(2)作MNAE,垂足为N,连接DN

因为AOEO, DOEO,EO平面AOD,所以EODM

,因为AODM ,DM平面AOE

因为MNAE,DNAE, DNM就是所求的DM=,MN=,DN=,COSDNM=

二面角O-AE-D的平面角的余弦值为

 

查看答案和解析>>

已知直线y=kx-1与双曲线x2-y2=1的左支交于不同两点A、B,若另有一条直线l经过P(-2,0)及线段AB的中点Q.
(1)求k的取值范围;
(2)求直线l在y轴上的截距b的取值范围.

查看答案和解析>>

精英家教网四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD=
2
,AB=AC.
(I)取CD的中点为F,AE的中点为G,证明:FG∥面ABC;
(II)证明:AD⊥CE.

查看答案和解析>>


同步练习册答案