即点P恒在定直线:上.-----12分 查看更多

 

题目列表(包括答案和解析)

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)上任意一点到两焦点距离之和为2
3
,离心率为
3
3
,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.
(1)求椭圆E的标准方程;
(2)证明:直线PQ与直线OQ的斜率之积是定值;
(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足
MP
PN
=
MH
HN
,试证明点H恒在一定直线上.

查看答案和解析>>

已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.
(1)求椭圆E的标准方程;
(2)证明:直线PQ与直线OQ的斜率之积是定值;
(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.

查看答案和解析>>

已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.
(1)求椭圆E的标准方程;
(2)证明:直线PQ与直线OQ的斜率之积是定值;
(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.

查看答案和解析>>

已知椭圆E:=1(a>b>0)上任意一点到两焦点距离之和为,离心率为,左、右焦点分别为F1,F2,点P是右准线上任意一点,过F2作直线PF2的垂线F2Q交椭圆于Q点.
(1)求椭圆E的标准方程;
(2)证明:直线PQ与直线OQ的斜率之积是定值;
(3)点P的纵坐标为3,过P作动直线l与椭圆交于两个不同点M、N,在线段MN上取点H,满足,试证明点H恒在一定直线上.

查看答案和解析>>

已知P为抛物线y2=4x的焦点,过P的直线l与抛物线交与A,B两点,若Q在直线l上,且满足|
AP
||
QB
|=|
AQ
||
PB
|
,则点Q总在定直线x=-1上.试猜测如果P为椭圆
x2
25
+
y2
9
=1
的左焦点,过P的直线l与椭圆交与A,B两点,若Q在直线l上,且满足|
AP
||
QB
|=|
AQ
||
PB
|
,则点Q总在定直线
 
上.

查看答案和解析>>


同步练习册答案