C. 查看更多

 

题目列表(包括答案和解析)

C.如图所示,平行金属导轨与水平面成θ角,导轨与两相同的固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab,质量为m,导体棒的电阻R=2R1,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,固定电阻R1消耗的热功率为P,此时(  )

查看答案和解析>>

精英家教网C.(选修模块3-5)
(1)下列说法中正确的是
 

A.随着温度的升高,一方面各种波长的辐射强度都有增加,另一方面辐射强度的极大值向波长较短的方向移动
B.在康普顿效应中,当入射光子与晶体中的电子碰撞时,把一部分动量转移给电子,因此光子散射后波长变短
C.根据海森伯提出的不确定性关系可知,不可能同时准确地测定微观粒子的位置和动量
D.4个放射性元素的原子核经过一个半衰期后一定还剩下2个没有发生衰变
(2)在《探究碰撞中的不变量》实验中,某同学采用如图所示的装置进行实验.把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静止释放后使它们相碰,碰后粘在一起.实验过程中除了要测量A球被拉起的角度θ1,及它们碰后摆起的最大角度θ2之外,还需测量
 
(写出物理量的名称和符号)才能验证碰撞中的动量守恒.用测量的物理量表示动量守恒应满足的关系式是
 

(3)2008年10月7日,日美科学家分享了当年诺贝尔物理学奖.他们曾就特定对称性破缺的起源给出了解释,并预言了一些当时还未发现的夸克.夸克模型把核子(质子和中子)看做夸克的一个集合体,且每三个夸克组成一个核子.已知质子和中子都是由上夸克u和下夸克d组成的.每种夸克都有对应的反夸克.一个上夸克u带有+
2
3
e的电荷,而一个下夸克d带有-
1
3
e的电荷,因此一个质子p可以描述为p=uud,则一个中子n可以描述为n=
 
.一个反上夸克
.
u
带有-
2
3
e的电荷,一个反下夸克
.
d
带有+
1
3
e的电荷,则一个反质子p可描述为
.
p
=
 

查看答案和解析>>

C.(选修模块3-5)
(1)一个质量为m1的铍(
 
7
4
Be)原子核,从核外俘获一个质量为m2的电子后发生衰变,生成一个质量为m3的锂(
 
7
3
Li)原子核,并放出一个质量可以忽略不计的中微子.这就是铍核的EC衰变,这种核反应方程为:
 
.真空中光速为c,一个铍原子的EC衰变过程中释放的核能为
 

(2)研究光电效应时,用不同频率的紫外线照射金属锌,得到光电子最大初动能Ek随入射光频率变化的Ek--υ图象,应是下列如图1四个图中的
 

精英家教网
(3)如图2,质量为500g的铜块静止于光滑水平面上,一颗质量为50g的子弹以300m/s的水平速度撞到铜块后,又以100m/s的水平速度弹回,则铜块被撞后的速度为多大?

查看答案和解析>>

精英家教网C.(选修模块 3 一 5 )  
( l )在光电效应实验中,小明同学用同一实验装置(如图 l )在甲、乙、丙三种光的照射下得到了三条电流表与电压表读数之间的关系曲线,如图( 2 )所示.则
( A )乙光的频率小于甲光的频率 ( B )甲光的波长大于丙光的波长 ( C )丙光的光子能量小于甲光的光子能量 ( D )乙光对应的光电子最大初动能小于丙光的光电子最大初动能
( 2 )用光照射某金属,使它发生光电效应现象,若增加该入射光的强度,则单位时间内从铝板表面逸出的光电子数
 
,从表面逸出的光电子的最大动量大小
 
(选填“增加”、“减小”或“不变,')
( 3 )用加速后动能为Ek0的质子:
 
1
1
H轰击静止的原子核 x,生成两个动能均为Ek的
 
4
2
He核,并释放出一个频率为 v 的γ光子.写出上述核反应方程并计算核反应中的质量亏损.(光在真空中传播速度为 c )

查看答案和解析>>

精英家教网C.(选修模块 3 一 5 ) 
( 1 )下列说法中正确的是
 

A.太阳辐射的能量主要来源于重核裂变
B.β衰变所释放的电子是原子核内的中子转化成质子时所产生的 
C.X 射线是处于激发态的原子核辐射出来的
D.比结合能越大表示原子核中核子结合得越松散,原子核越不稳定
( 2 )用能量为 15eV 的光子照到某种金属上,能发生光电效应,测得其光电子的最大初动能为 12.45eV,则该金属的逸出功为
 
 eV.氢原子的能级如图所示,现有一群处于 n=3 能级的氢原子向低能级跃迁,在辐射出的各种频率的光子中,能使该金属发生光电效应的频率共有
 
 种.
( 3 ) 2011 年 3 月 11 日,日本发生 9.0级地震后爆发海啸,导致福岛核电站核泄漏,核安全问题引起世界关注.福岛核电站属于轻水反应堆,即反应堆使用普通水作为减速剂,使快中子减速变成慢中子,便于被
 
235
92
U俘获,发生可控制核裂变的链式反应. 
( a )若铀核
 
235
92
U俘获一个慢中子,发生核裂变后产生了
 
139
54
Xe 和
 
94
38
Sr,试写出核裂变方程. 
( b )若快中子的减速过程可视为快中子与普通水中
 
1
1
H核发生对心正碰后减速.上述碰撞过程可简化为弹性碰撞,现假定某次碰撞前快中子速率为 v0,靶核
 
1
1
H核静止.试通过计算说明,此次碰撞后中子的速度变为多少?(已知氢核质量和中子质量近似相等).

查看答案和解析>>

1.C由电荷数守恒和质量数守恒可知A、B错,由于镍63放出电子,故带正电,电势比铜片电势高,C正确,电流方向从铜片到镍,D错

2.C

3.A由可知,A正确

4.B将分子粗略地看成一个小立体,则

5.D照射到abc上三种光的频率关系,为,由光电效应的规律可知板b有电子射出,板c一定有光电子放出,正确答案为D

6.A航天飞机的运行周期

   

    设经过时间t航天飞机又通过建筑物上方,则

    ,所以

7.A沿着电场线的方向电势降低,,B错;EF两点在同一等势面上,且,A正确

    由等量异种电荷的等势面特点可知.C错,D错

8.CFkA

    由①②可知,C正确.

9.C先根据题意画出电子所走的弧,因为弧上任意一点的速度方向必然与该点所在的半径垂直,故可以过A点做与方向(即AB方向)垂直的直线,此即为带电粒子做匀速圆周运动的半径方向.同理过C点作垂直于BC的直线,也为该点的半径方向,两半径相交点即为带电粒子做匀速圆周运动的圆心.如答图1所示.由图示情况可以看出

答图1

    当时电子刚好不能从BC边射出.

    要使电子可以从BC边射出,必满足r,而r

    ∴B时,电子可以从BC边射出

10.D11.(1)大于(2)轨道末端出口水平(3)P为落地的平均位置,F一步中的应为-2r

12.(1)1.000

 (2)①略

    ②A.将滑动变阻器调至输出电压为零的位置,再合上

    B.将扳向2,调滑动变阻器使电流表指针在某一电流刻度,并记下该位置.

    C.使阻值最大后,将扳向1,调电阻箱,使电流表指针回到所记的位置,记下电阻箱阻值

    D.被测电阻

13.侦察卫星环绕地球一周,通过有日照的赤道一次,在卫星一个周期时间(设为)地球自转的角度为q ,只要q 角所对应的赤道弧长能被拍摄下来,则一天时间内,地面上赤道处全部在有日照条件下就能被拍摄下来.设侦察卫量的周期为,地球对卫星的万有引力为卫星做圆周运动的向心力,卫星的轨道半径rRh,根据牛顿第二定律,则

    在地球表面的物体重力近似等于地球的万有引力,即mg

    解得侦察卫星的周期为

    已知地球自转周期为T,则卫星绕行一周,地球自转的角度为q =2p?

    摄像机应拍摄赤道圆周的弧长为q 角所对应的圆周弧长应为

   

14.当开关S在位置1时,粒子在电容器中做类平抛运动,即水平方向做匀速直线运动,竖直方向做初速度为零的匀加速直线运动,有

    lvt

    得

    则带电粒子的初速度

    (m/s)

    当S接到2位置时,电容器内形成按余弦规律变化的振荡电场,周期为

   

    接到位置2时,电容器内电场仍竖直向上,设粒子在第一个内加速向下运动,在第二个内减速向下运动,在半个周期结束时,粒子的速度为零,平均加速度a,运动时间t,故粒子半个周期内竖直方向位移,粒子不会打到下极板上.

    在第三个内,粒子加速向上运动,在第四个内减速向上运动,在后半个周期结束时,粒子的速度为零.从对称性角度考虑,经过一个周期,粒子又回到两板中央,竖直方向速度为零.

    不论电容器内电场如何作用周期性的变化,粒子在水平方向不受电场力的作用,水平速度不变,所以粒子在电场中运动的时间仍为2×s,在这一时间内,电场做周期性变化的次数

   

    所以当粒子离开电容器时,竖直速度为零,水平速度不变,仍为v=1.0×m/s,从两板中央飞出.

    所以粒子能飞出电容器,从两板中央水平飞出,v=1.00×m/s.

15.(1)滑块速度向右,根据匀速运动条件

   

    可知E的方向必水平向右.

    由返回速度向左且作匀速运动可知

    mg

    而题中有:

    ②③联立得知,即=2mg,代入①式

    所以Em mg+2mg)/q=3m mg/q

    (2)设往返总时间为T有:

   

    即:,代入②式可得

    (3)返回时不受摩擦力,所以全过程摩擦力做功

    W=-fL=-m mgL=-3m mgL

16.用答图2示平面内的光线进行分析,并只讨论从右侧观察的情形,如图所示,由亮点发出的任一光线CP线经过两次折射而从液面射出.由折射定律,按图上标记的各相关角度.有sina nsinb  

    sing =(1/n)sind

    其中d ≤p /2g =(p /2)-(b j ) ③

答图2

    注意到,若液体内光线入射到液面上时发生全反射,就没有从液面射出的折射光线.全反射临界角满足条件sin=1/n

    可知光线CP经折射后能从液面射出从而可被观察到的条件为g

    或sing <1/n

    现在计算sing .利用③式可得

    sing =cos(b j )=cosb cosj -sinb sinj

    由①式可得cosb

    因此,nsing =cosj -nsinb sinj 又由①式nsing=cosj  -sina sinj  ⑥

    由图及①、②式,或由⑥式均可看出a 越大则g 越小,因此,如果与a 值最大的光线相应的g 设为,若,则任何光线都不能射出液面.反之,只要,这部分光线就能射出液面,从液面上方可以观察到亮点.由此极端情况即可求出本题要求的条件.

    自C点发出的a 值最大的光线是极靠近CD的光线,它被DB面折射后进入液体,由⑥式可知与之相应的

    a =(p /2)-j

    nsin=cosj  -cosj sinj

    能观察到亮点的条件为nsin<1

    即cosj -cosj sinj <1

    上式可写成cosj <1+cosj sinj

    取平方

    化简

    故

    开方并化简可得

    这就是在液面上方从侧面适当的方向能看到亮点时nj 之间应满足的条件.

17.(1)激光器的功率为NE

    已知激光对物体表面的压力为F=2N?p

    由光压的定义

    联立以上各式得

    (2)太阳光对薄膜产生的光压

     ⑤

    探测器受到的总光压力

    FI?S

    以探测器为研究对象,根据牛顿第二定律Fm?a

   

18.(1)由竖直上抛运动得炮弹被射出时的初速度

    (2)由动量守恒定律得:

    带电物体在洛仑兹力作用下的直线运动是匀速直线运动,假设电场强度方向竖直向上,根据受力有:

   

    联立②③④得:

    两物体匀速运动的速度

    ∴40m/s ⑤

    50m/s ⑥

    所加电场为

   

    因为E为正,所以场强方向竖直向上

    (3)由动能定理得:爆炸对两物体做的功

   

   

    (4)由平抛运动规律得落地时间:

   

    两物体的水平位移

    =40×4m160m

    =50×4m200m

    两物体落地点间的距离

    DsL=360+20=380m

 

 

 


同步练习册答案