22.甲从装有编号为1.2.3.4.5的卡片的箱子中任意取一张.乙从装有编号为2.4的卡片的箱子中任意取一张.用.分别表示甲.乙取得的卡片上的数字. 查看更多

 

题目列表(包括答案和解析)

【必做题】(本题满分10分)

某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是‘‘海宝”,即可获奖,否则,均为不获奖.卡片用后后放同盒子,下一位参加者继续重复进行。

(I)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?

(2)若有四张“海宝”卡,现有甲乙丙丁四人依次抽奖.用表示获奖的人数,求的分布列及E的值.

 

查看答案和解析>>

【必做题】(本题满分10分)

某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.

(I)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?

(Ⅱ)现有甲乙丙丁四人依次抽奖,用表示获奖的人数,求的分布列及的值.

查看答案和解析>>

必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.

某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)

(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;

(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求的概率分布列和数学期望.

 

 

查看答案和解析>>


【必做题】第22题和第23题为必做题, 每小题10分,共20分.要写出必要的文字说明或演算步骤.
有甲、乙两个箱子,甲箱中有张卡片,其中张写有数字张写有数字张写有数字;乙箱中也有张卡片,其中张写有数张写有数字张写有数字.
(1)如果从甲、乙箱中各取一张卡片,设取出的张卡片上数字之积为,求
分布列及数学期望;
(2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的张卡片都写有
数字的概率是多少?

查看答案和解析>>

必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.

某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)

(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;

(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求的概率分布列和数学期望.

 

 

查看答案和解析>>

1.;   2.   2.   3.200   4. 3      5.  6.     7.

8.6  9.;  10.    11.1005    12.4    13.  1    14.

15.解: (1).如图,

      即

   (2).在中,由正弦定理得

    由(1)得

    即

    

16.解:(Ⅰ) 在△PAC中,∵PA=3,AC=4,PC=5,

        ∴,∴;又AB=4,PB=5,∴在△PAB中,

       同理可得

       ∵,∴

      ∵平面ABC,∴PA⊥BC. 

(Ⅱ)  如图所示取PC的中点G,

连结AG,BG,∵PF:FC=3:1,∴F为GC的中点

      又D、E分别为BC、AC的中点,

∴AG∥EF,BG∥FD,又AG∩GB=G,EF∩FD=F……………7分 

      ∴面ABG∥面DEF           

即PC上的中点G为所求的点                  …………… 9分

(Ⅲ)

17.解:(1)由题意得,  

整理得,解得, 

所以“学习曲线”的关系式为. 

(2)设从第个单位时间起的2个单位时间内的平均学习效率为,则

 

,则,  

显然当,即时,最大, 

代入,得

所以,在从第3个单位时间起的2个单位时间内的平均学习效率最高.

18. 解:(1)由题可得,设

,……………………2分

,∵点在曲线上,则,∴,从而,得.则点P的坐标为. ……………………5分

(2)由题意知,两直线PA、PB的斜率必存在,设PB的斜率为,………6分

则BP的直线方程为:.由 ,设,则

同理可得,则. ………………9分

所以:AB的斜率为定值. ………………10分

(3)设AB的直线方程:.

,得

,得

P到AB的距离为,………………12分

当且仅当取等号

∴三角形PAB面积的最大值为。………………14分

 

19.解: (1)依题意有,于是.

所以数列是等差数列.                              .4分

(2)由题意得,即 , ()         ①

所以又有.                        ②   

由②①得:, 所以是常数.       

都是等差数列.

,那么得    ,

.    (   

                              10分

(3) 当为奇数时,,所以

为偶数时,所以       

轴,垂足为,要使等腰三角形为正三角形,必须且只须:.                             

为奇数时,有,即        ①

, 当时,. 不合题意.                    

为偶数时,有,同理可求得  .

;当时,不合题意.

综上所述,使等腰三角形中,有正三角形,的值为

 ;16分

20⑴当x≥1时,只需2+a≥0即a≥-2

⑵作差变形可得:

=  (*)

x1>0,x2>o  从而

∴ln,又a<0   ∴(*)式≥0

(当且仅当x1=x2时取“=”号)

 (3)可化为:

 x ∴lnx≤1≤x,因等号不能同时取到,∴lnx<x,lnx―x<0

∴a≥

, x ,

=

 x,∴lnx―1―<0,且1―x≤0

从而,,所以g(x)在x上递增,从而=g(1)= ―

由题设a≥―

存在x,不等式f(x)≤(a+3)―能成立且a

21.A解(1)利用△CDO≌△BCM,可证MB=OC=AB

(2)由△PMB∽△BMC,得,∴BP=

B、设M=,则=8=,故

       =,故

联立以上两方程组解得a=6,b=2,c=4,d=4,故M=

C.求直线)被曲线所截的弦长,将方程分别化为普通方程:

………(5分)

 D.解:由柯西不等式可得

 

22、解析:(1)记“”为事件A, ()的取值共有10种情况,…………1分

满足的()的取值有以下4种情况:

(3,2),(4,2),(5,2),(5,4),

所以

(2)随机变量的取值为2,3,4,5,的分布列是

2

3

4

5

P

               …………10分

所以的期望为

23、解:(1)由

∵在数列,∴,∴

故数列中的任意一项都小于1

(2)由(1)知,那么

由此猜想:(n≥2).下面用数学归纳法证明:

①当n=2时,显然成立;

②当n=k时(k≥2,k∈N)时,假设猜想正确,即

那么

∴当n=k+1时,猜想也正确

综上所述,对于一切,都有

 

 

 


同步练习册答案