题目列表(包括答案和解析)
【必做题】(本题满分10分)
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是‘‘海宝”,即可获奖,否则,均为不获奖.卡片用后后放同盒子,下一位参加者继续重复进行。
(I)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?
(2)若有四张“海宝”卡,现有甲乙丙丁四人依次抽奖.用表示获奖的人数,求的分布列及E的值.
【必做题】(本题满分10分)
某单位举办2010年上海世博会知识宣传活动,进行现场抽奖.盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖.卡片用后放回盒子,下一位参加者继续重复进行.
(I)有三人参加抽奖,要使至少一人获奖的概率不低于,则“海宝”卡至少多少张?
(Ⅱ)现有甲乙丙丁四人依次抽奖,用表示获奖的人数,求的分布列及的值.
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)
(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;
(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求的概率分布列和数学期望.
【必做题】第22题和第23题为必做题, 每小题10分,共20分.要写出必要的文字说明或演算步骤.
有甲、乙两个箱子,甲箱中有张卡片,其中张写有数字,张写有数字,张写有数字;乙箱中也有张卡片,其中张写有数字,张写有数字,张写有数字.
(1)如果从甲、乙箱中各取一张卡片,设取出的张卡片上数字之积为,求的
分布列及的数学期望;
(2)如果从甲箱中取一张卡片,从乙箱中取两张卡片,那么取出的张卡片都写有
数字的概率是多少?
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)
(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;
(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求的概率分布列和数学期望.
1.; 2. 2. 3.200 4. 3 5. 6. 7.
8.6 9.; 10. 11.1005 12.4 13. 1 14.
15.解: (1).如图,,
即.
(2).在中,由正弦定理得
由(1)得,
即.
16.解:(Ⅰ) 在△PAC中,∵PA=3,AC=4,PC=5,
∴,∴;又AB=4,PB=5,∴在△PAB中,
同理可得
∵,∴
∵平面ABC,∴PA⊥BC.
(Ⅱ) 如图所示取PC的中点G,
连结AG,BG,∵PF:FC=3:1,∴F为GC的中点
又D、E分别为BC、AC的中点,
∴AG∥EF,BG∥FD,又AG∩GB=G,EF∩FD=F……………7分
∴面ABG∥面DEF
即PC上的中点G为所求的点 …………… 9分
(Ⅲ)
17.解:(1)由题意得,
整理得,解得,
所以“学习曲线”的关系式为.
(2)设从第个单位时间起的2个单位时间内的平均学习效率为,则
令,则,
显然当,即时,最大,
将代入,得,
所以,在从第3个单位时间起的2个单位时间内的平均学习效率最高.
18. 解:(1)由题可得,,设
则,,……………………2分
∴,∵点在曲线上,则,∴,从而,得.则点P的坐标为. ……………………5分
(2)由题意知,两直线PA、PB的斜率必存在,设PB的斜率为,………6分
则BP的直线方程为:.由得 ,设,则,
同理可得,则,. ………………9分
所以:AB的斜率为定值. ………………10分
(3)设AB的直线方程:.
由,得,
由,得
P到AB的距离为,………………12分
则
。
当且仅当取等号
∴三角形PAB面积的最大值为。………………14分
19.解: (1)依题意有,于是.
所以数列是等差数列. .4分
(2)由题意得,即 , () ①
所以又有. ②
由②①得:, 所以是常数.
由都是等差数列.
,那么得 ,
. (
故 10分
(3) 当为奇数时,,所以
当为偶数时,所以
作轴,垂足为则,要使等腰三角形为正三角形,必须且只须:.
当为奇数时,有,即 ①
, 当时,. 不合题意.
当为偶数时,有 ,,同理可求得 .
;;当时,不合题意.
综上所述,使等腰三角形中,有正三角形,的值为
;; ;16分
20⑴当x≥1时,只需2+a≥0即a≥-2
⑵作差变形可得:
= (*)
x1>0,x2>o 从而
∴ln,又a<0 ∴(*)式≥0
即(当且仅当x1=x2时取“=”号)
(3)可化为:
x ∴lnx≤1≤x,因等号不能同时取到,∴lnx<x,lnx―x<0
∴a≥
令, x ,
=
x,∴lnx―1―<0,且1―x≤0
从而,,所以g(x)在x上递增,从而=g(1)= ―
由题设a≥―
即存在x,不等式f(x)≤(a+3)―能成立且a
21.A解(1)利用△CDO≌△BCM,可证MB=OC=AB
(2)由△PMB∽△BMC,得,∴BP=
B、设M=,则=8=,故
=,故
联立以上两方程组解得a=6,b=2,c=4,d=4,故M=.
C.求直线()被曲线所截的弦长,将方程,分别化为普通方程:
,………(5分)
D.解:由柯西不等式可得
22、解析:(1)记“”为事件A, ()的取值共有10种情况,…………1分
满足的()的取值有以下4种情况:
(3,2),(4,2),(5,2),(5,4),
所以;
(2)随机变量的取值为2,3,4,5,的分布列是
2
3
4
5
P
…………10分
所以的期望为
23、解:(1)由得
∵在数列中,∴,∴
故数列中的任意一项都小于1
(2)由(1)知,那么,
由此猜想:(n≥2).下面用数学归纳法证明:
①当n=2时,显然成立;
②当n=k时(k≥2,k∈N)时,假设猜想正确,即,
那么,
∴当n=k+1时,猜想也正确
综上所述,对于一切,都有。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com