如果事件.相互独立.那么 球的体积公式 查看更多

 

题目列表(包括答案和解析)

如果事件A(或B)是否发生对事件B(或A)发生的概率_________,这样的两个事件叫做相互独立事件.?

如果事件AB是相互独立的,那么ABB也是_____的.

查看答案和解析>>

如果事件A与B相互独立,那么下面各对事件不相互独立的是 
[     ]
A 、A 与    
B、与B  
C、  
D、A与

查看答案和解析>>

甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是
 
(写出所有正确结论的编号).
P(B)=
2
5

P(B|A1)=
5
11

③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关.

查看答案和解析>>

在某种考试中,设A、B、C三人考中的概率分别为
2
5
3
4
1
3
且各自考中的事件是相互独立的
(1)求三人都考中的概率
(2)求至少一人考中的概率
(3)几人考中的事件最容易发生?

查看答案和解析>>

甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件.再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.给出下列结论:
①P(B)=
2
5

②P(B|A1)=
5
11

③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关;
其中正确的有(  )
A、②④B、①③
C、②④⑤D、②③④⑤

查看答案和解析>>

一、选择题:

A卷:CCABD    BDCBB    AA

二、填空题:

(13)        (14)    (15)    (16)

三、解答题:

(17)解:

(Ⅰ)由,得,  ∴

,即,得……………4分

(Ⅱ)当时,

,即,…………………………7分

知,

是首项为,公比为的等比数列,

  ……………………………………………………10分

(18)解:

,知,又,由正弦定理,有

,∴,……3分

  ……………6分

        

         …………9分

,  ∴

故所求函数为,函数的值域为……………12分

(19)解:

      记顾客购买一件产品,获一等奖为事件,获二等奖为事件,不获奖为事件,则

(Ⅰ)该顾客购买2件产品,中奖的概率

  ……………4分

  (Ⅱ)该顾客获得奖金数不小于100元的可能值为100元,120元,200元,依次记这三个事件为,则

        ,………6分

        ,………8分

      ,………10分

    所以该顾客获得奖金数不小于100元的概率

……12分

(20)解法一:

      (Ⅰ)取中点,连结,则

       又, ∴,四边形是平行四边形,

       ∴,又

       ∴ ……………………………………………………4分

      (Ⅱ)连结

        ∵,  ∴

       又平面平面,∴

      而,  ∴

     作,则,且的中点。

,连结,则

 于是为二面角的平面角。…………………………8分

,∴

在正方形中,作,则

,∴

故二面角的大小为…………………………12分

 

 

 

 

 

 

 

 

 

 

    

解法二:如图,以为原点,建立空间直角坐标系,使轴,分别在轴、轴上。

(Ⅰ)由已知,

, ∴

,∴   ………………………………………4分

(Ⅱ)设为面的法向量,则,且

,取,则 ……………8分

为面的法向量,所以

因为二面角为锐角,所以其大小为…………………………12分

(21)解:

     (Ⅰ) 

      令,则………………2分

,即,则恒有,函数没有极值点。…………4分

,即,或,则有两个不相等的实根,且的变化如下:

由此,是函数的极大值点,是函数的极小值点。

综上所述,的取值范围是…………………………7分

(Ⅱ)由(Ⅰ)知,

…………………………10分

,得(舍去),

所以,…………………………12分

(22)解:

(Ⅰ)记

                          ①

                            ②

,得

,                 ③

由①、③,得,即……3分

由于,则上面方程可化为

,即,所以

代入①式,整理,并注意,得

由于,所以

因此,直线与双曲线有一个公共点…………………………6分

(注:直线和双曲线联立后,利用判断交点个数也可)

(Ⅱ)双曲线的渐近线方程为,不妨设点在直线上, 点在直线上。

,得点坐标为

,得点坐标为,…………………………9分

因为

所以为线段的中点。…………………………12分

(注:若只计算的横坐标或纵坐标判断为线段的中点不扣分)

 

 

 


同步练习册答案