如果事件.相互独立.那么 球的体积公式 查看更多

 

题目列表(包括答案和解析)

如果事件A(或B)是否发生对事件B(或A)发生的概率_________,这样的两个事件叫做相互独立事件.?

如果事件AB是相互独立的,那么ABB也是_____的.

查看答案和解析>>

如果事件A与B相互独立,那么下面各对事件不相互独立的是 
[     ]
A 、A 与    
B、与B  
C、  
D、A与

查看答案和解析>>

甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件,则下列结论中正确的是
 
(写出所有正确结论的编号).
P(B)=
2
5

P(B|A1)=
5
11

③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1,A2,A3中哪一个发生有关.

查看答案和解析>>

在某种考试中,设A、B、C三人考中的概率分别为
2
5
3
4
1
3
且各自考中的事件是相互独立的
(1)求三人都考中的概率
(2)求至少一人考中的概率
(3)几人考中的事件最容易发生?

查看答案和解析>>

甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件.再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.给出下列结论:
①P(B)=
2
5

②P(B|A1)=
5
11

③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件;
⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关;
其中正确的有(  )
A、②④B、①③
C、②④⑤D、②③④⑤

查看答案和解析>>

一、选择题:

A卷:CCABD    BDCBB    AA

二、填空题:

(13)        (14)    (15)    (16)

三、解答题:

(17)解:

,知,又,由正弦定理,有

,∴,……3分

  ……………5分

        

         …………8分

,  ∴

故所求函数为,函数的值域为……………10分

(18)解:

      记顾客购买一件产品,获一等奖为事件,获二等奖为事件,不获奖为事件,则

(Ⅰ)该顾客购买2件产品,中奖的概率

  ……………4分

  (Ⅱ)的可能值为0,20,40,100,120,200,其中

       

        

        ……………8分

的分布列为

                                                                ……………10分

的期望

(元)…………………………………………………………………12分

(19)解法一:

      (Ⅰ)取中点,连结,则

       又, ∴,四边形是平行四边形,

       ∴,又

       ∴ ……………………………………………………4分

      (Ⅱ)连结

        ∵,  ∴

       又平面平面,∴

      而,  ∴

     作,则,且的中点。

,连结,则

 于是为二面角的平面角。…………………………8分

,∴

在正方形中,作,则

,∴

故二面角的大小为…………………………12分

 

 

 

 

 

 

 

 

 

 

    

解法二:如图,以为原点,建立空间直角坐标系,使轴,分别在轴、轴上。

(Ⅰ)由已知,

, ∴

,∴   ………………………………………4分

(Ⅱ)设为面的法向量,则,且

,取,则 ……………8分

为面的法向量,所以

因为二面角为锐角,所以其大小为…………………………12分

(20)解:

     (Ⅰ)  ……………………………………………………1分

      (1)当时,由,知单调递增
         而,则不恒成立…………………………3分

       (2)当时,令,得

           当时,单调递增;时, 单调递减,处取得极大值。

   由于,所以,解得,即当且仅当恒成立。

综上,所求的值为   …………………………7分

(Ⅱ)等价于

下证这个不等式成立。

由(Ⅰ)知,即……………9分

…………………………12分

(21)解:

(Ⅰ)曲线方程可写为

,则,又设

曲线在点处的切线斜率,则切线方程为

,亦即…………………………3分

分别将坐标代入切线方程得

,得

,  ①

,  ②

……………7分

,∴

则由②式得

从而曲线的方程为…………………………8分

(Ⅱ)轴与曲线交点分别为,此时……9分

不在轴上时,设直线方程为

,则在第一象限,

,得,由

………………………………………11分

因为曲线都关于轴对称,所以当时,仍有

综上,题设的为定值…………………………12分

(22)解:

      (Ⅰ)由,且,得

时, ,解得

时,,解得

猜想:……………………………………………………2分

用数学归纳法证明如下

(1)       当时,命题显然成立。………………………………………3分

(2)       假设当时命题成立,即,那么

         由,得

       

              于是,当时命题仍然成立………………………………………6分

根据(1)和(2),对任何,都有…………………………7分

(Ⅱ)当时,,且对于也成立。

因此,

对于,由,得

,……………10分

综上,………………………………………12分

 

 

 


同步练习册答案