(2)写出在[0.]上的递增区间. 18 如图.在矩形ABCD中.AB=2.AD=1.E为CD的中点.将△ADE沿AE折起.使平面ADE⊥平面ABCE.得到几何体D―ABCE. (1)求证:BE⊥平面ADE, 查看更多

 

题目列表(包括答案和解析)

 

已知函数对任意实数x均有,其中常数k为负数,且在区间[0,2]上有表达式

   (1)求的值;

   (2)写出在[-3,3]上的表达式,并讨论函数在[-3,3]上的单调性;

   (3)求出在[-3,3]上的最小值与最大值,并求出相应的自变量的取值.

  

 

 

查看答案和解析>>

已知α=
π
3

(1)写出所有与α终边相同的角;
(2)写出在(-4π,2π)内与α终边相同的角;
(3)若角β与α终边相同,则
β
2
是第几象限的角?

查看答案和解析>>

口袋里装有大小相同的4个红球和8个白球,甲、乙两人依规则从袋中有放回摸球,每次摸出一个球.规则:若一方摸出红球,则此人继续摸球;若一方摸出白球,则由对方下一次摸球.每次摸球都相互独立,并由甲先进行第一次摸球.
(1)求第三次由甲摸球的概率;
(2)写出在前三次摸球中,甲摸得红球的次数的分布列,并求数学期望.

查看答案和解析>>

(本小题满分14分)

已知函数对任意实数均有,其中常数为负数,且在区间上有表达式.

(1)求的值;

(2)写出上的表达式,并讨论函数上的单调性;

(3)求出上的最小值与最大值,并求出相应的自变量的取值.

 

查看答案和解析>>

已知α=
(1)写出所有与α终边相同的角;
(2)写出在(-4π,2π)内与α终边相同的角;
(3)若角β与α终边相同,则是第几象限的角?

查看答案和解析>>

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

A

A

B

B

D

C

B

B

C

13.    9     14.         15.               16.           

17.解:(1)

        (4分)

的最小正周期为                                              (5分)

的最小值为-2                                              (6分)

(2)的递增区间为                                (10分)

18.(1)证明:过D作DHAE于H,

平面ADE平面ABCE

DH平面ABCE    DHBE

中,由题设条件可得:AB=2,AE=BE=    AEBE

BE平面ADE                                                 (6分)

(2)由(1)知,BE平面ADE,为BD和平面ADE所成的角,且BEDE

在矩形ABCD中,AB=2,AD=1,E为CD的中点

DE=1,BE=

中,

故BD和平面ADE所成角的正切值为                         (12分)

19.(1)记“3粒种子,至少有1粒未发芽”为事件

由题意,种3粒种子,相当于作3次独立重复试验,

                                  (4分)

(2)记“3粒A种子,至少有2粒未发芽”为事件,“3粒B种子,全部发芽”为事件,则     (6分)

由于相互独立,故     (8分)

(3)                   (12分)

20.解:(1)的图像关于原点对称,为奇函数

                                          (4分)

(2)假设存在两点满足题设条件

    

而两切线垂直,则应有,矛盾,

故不存在满足题设条件的两点A,B                                 (8分)

(3)时,为减函数

                               (12分)

21.解:(1)

两式相减得:

时,

是首项为,公比为的等比数列

                                          (4分)

(2)

为以-1为公差的等差数列,                    (7分)

(3)

以上各式相加得:

时,

时,上式也成立,                          (12分)

22.(1)依抛物线定义知,点P的轨迹C,为N,F为焦点,直线为准线的抛物线

曲线C的方程为.                                           (4分)

(2)①设M、N的方程为带入并整理得

      

设MN的中点为

MN的垂直平分线方程为

点B的坐标为

的范围是                         (8分)

②易得弦长

为直角三角形,则为等腰直角三角形,

点B的坐标为(0,10)

 

 

 


同步练习册答案