设点.动圆P经过点F.且和直线相切.记动圆的圆心P的轨迹为曲线C. (1)求曲线C的轨迹方程, 作直线与抛物线C交于M.N两点.弦MN的垂直平分线交y轴于B点. 1求|OB|的取值范围, 2若△BMN是直角三角形.求B点的坐标. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知椭圆(a>b>0)的离心率为,以原点为圆心。椭圆短半轴长半径的

圆与直线y=x+2相切,

(Ⅰ)求a与b;w.w.w.k.s.5.u.c.o.m       

(Ⅱ)设该椭圆的左,右焦点分别为,直线且与x轴垂直,动直线与y轴垂直,与点p..求线段P垂直平分线与的交点M的轨迹方程,并指明曲线类型。

查看答案和解析>>

(本小题满分12分) 已知椭圆的离心率,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。(I)求a与b;(II)设椭圆的左,右焦点分别是F1和F2,直线且与x轴垂直,动直线轴垂直,于点P,求线段PF1的垂直平分线与的交点M的轨迹方程,并指明曲线类型。

查看答案和解析>>

(本小题满分12分)  已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足

点P是线段F1Q与该椭圆的交点,

点T在线段F2Q上,并且满足  

(Ⅰ)设为点P的横坐标,证明

   (Ⅱ)求点T的轨迹C的方程; (Ⅲ)试问:在点T的轨迹C上,是否存在点M,

使△F1MF2的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.

(1)求曲线C1的方程;

(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于

点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.

 

查看答案和解析>>

(本小题满分12分)

    已知定直线l:x=1和定点M(t,0)(t∈R),动点P到M的距离等于点P到直线l距离的2倍。

(1)求动点P的轨迹方程,并讨论它表示什么曲线;

(2)当t=4时,设点P的轨迹为曲线C,过点M作倾斜角为θ(θ>0)的直线交曲线C于A、B两点,直线l与x轴交于点N。若点N恰好落在以线段AB为直径的圆上,求θ的值。

 

查看答案和解析>>

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

D

A

A

B

B

D

C

B

B

C

13.    9     14.         15.               16.           

17.解:(1)

        (4分)

的最小正周期为                                              (5分)

的最小值为-2                                              (6分)

(2)的递增区间为                                (10分)

18.(1)证明:过D作DHAE于H,

平面ADE平面ABCE

DH平面ABCE    DHBE

中,由题设条件可得:AB=2,AE=BE=    AEBE

BE平面ADE                                                 (6分)

(2)由(1)知,BE平面ADE,为BD和平面ADE所成的角,且BEDE

在矩形ABCD中,AB=2,AD=1,E为CD的中点

DE=1,BE=

中,

故BD和平面ADE所成角的正切值为                         (12分)

19.(1)记“3粒种子,至少有1粒未发芽”为事件

由题意,种3粒种子,相当于作3次独立重复试验,

                                  (4分)

(2)记“3粒A种子,至少有2粒未发芽”为事件,“3粒B种子,全部发芽”为事件,则     (6分)

由于相互独立,故     (8分)

(3)                   (12分)

20.解:(1)的图像关于原点对称,为奇函数

                                          (4分)

(2)假设存在两点满足题设条件

    

而两切线垂直,则应有,矛盾,

故不存在满足题设条件的两点A,B                                 (8分)

(3)时,为减函数

                               (12分)

21.解:(1)

两式相减得:

时,

是首项为,公比为的等比数列

                                          (4分)

(2)

为以-1为公差的等差数列,                    (7分)

(3)

以上各式相加得:

时,

时,上式也成立,                          (12分)

22.(1)依抛物线定义知,点P的轨迹C,为N,F为焦点,直线为准线的抛物线

曲线C的方程为.                                           (4分)

(2)①设M、N的方程为带入并整理得

      

设MN的中点为

MN的垂直平分线方程为

点B的坐标为

的范围是                         (8分)

②易得弦长

为直角三角形,则为等腰直角三角形,

点B的坐标为(0,10)

 

 

 


同步练习册答案