A. B. C. 1 D. 2 查看更多

 

题目列表(包括答案和解析)

等于(    )

A.                B.                 C.1                  D.2

查看答案和解析>>

(a+b+c)9的展开式中,a2b3c4的系数是(    )

A.1 260             B.1 263             C.1 296               D.2 520

查看答案和解析>>

A,B,C,D,E五人站成一排:

(1)A,B两人相邻的不同排法有多少种?

(2)A,B,C两两不相邻的排法有多少种?

(3)A,B都与C相邻的不同排法种数有多少种?

(4)A,B,C顺序一定的排法有多少种?

查看答案和解析>>

a,b,c均为正数,且点(a+b+c,c)在直线ax+by=3上,则2a+b+c的最小值为

A.-1                 B.+1              C.-2             D.+2

查看答案和解析>>

a,b,c均为正数,且点(a+b+c,c)在直线ax+by=3上,则2a+b+c的最小值为

A.-1                 B.+1              C.-2             D.+2

查看答案和解析>>

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

C

A

C

C

B

B

B

C

A

B

13.   2      14.                15.                16.    ①②③ 

17.解:(1)    (3分)

由题设,

则当时,                             (5分)

(2)当时,

   (8分)

故m的取值范围是                     (10分)

18.解析:(1)设表示事件“一个实验组中,服用A有效的小白鼠有只”,

表示事件“一个实验组中,服用B有效的小白鼠有只”

依题意有

          

           

           

           

所有的概率为

      (6分)

(2)的可能值为0,1,2,3且.

           

           

           

           

的分布列为

  

0

1

2

3

P

 

 

数学期望                              (12分)

19.(1)连接,过M作,且于点N.

在正,又平面平面,易证平面

中,

易知

即                                      (6分)

(2)过点M作垂足为E,连接EN,由(1)知平面(三垂线定理),即为二面角的平面角,由平面,知

中,

故在中,

故二面角的大小为         (12分)

20.解:(1)

                             (2分)

时,

时,此时函数递减;

时,此时函数递增;                   (5分)

时,取极小值,其极小值为0.                 (6分)

(2)由(1)可知函数的图像在处有公共点,

因此若存在的隔离直线,则该直线过这个公共点.

设隔离直线的斜率为则直线方程为

可得时恒成立

                              (8分)

下面证明时恒成立.

时,

时,此时函数递增;

时,此时函数递减;

时,取极大值,其极大值为0.                   (10分)

从而恒成立.

函数存在唯一的隔离直线                 (12分)

21.(1)椭圆C:   (1分)

直线                                                  (2分)

      (3分)

                        (5分)

若存在K,使M为AB的中点,M为ON的中点,

即N点坐标为                                         (6分)

由N点在椭圆,则

故存在使                                           (8分)

(2)

                                                           (12分)

22.解:(1)

 (4分)

是首项为2,公差为1的等差数列.

(2)

                   (8分)

(3)

                           (12分)

 

 


同步练习册答案