题目列表(包括答案和解析)
某工厂有工人
1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).(Ⅰ)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(Ⅱ)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.
(ⅰ)先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
(ⅱ)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)
某工厂有工人1 000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).
(Ⅰ)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(Ⅱ)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.
表1:
表2:
(ⅰ)先确定x,y,再在答题纸上完成下列频率分布直方图.就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
(ⅱ)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)
某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。
(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.
表1:
生产能力分组 | |||||
人数 | 4 | 8 | 5 | 3 |
生产能力分组 | ||||
人数 | 6 | y | 36 | 18 |
某工厂有工人1000名, 其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人),现用分层抽样方法(按A类、B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)。
(I)求甲、乙两工人都被抽到的概率,其中甲为A类工人,乙为B类工人;
(II)从A类工人中的抽查结果和从B类工人中的抽插结果分别如下表1和表2.
表1:
生产能力分组 | |||||
人数 | 4 | 8 | 5 | 3 |
表2:
生产能力分组 | ||||
人数 | 6 | y | 36 | 18 |
(i)先确定x,y,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)w.w.w.k.s.5.u.c.o.m
(ii)分别估计A类工人和B类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数,同一组中的数据用该组区间的中点值作代表)w.w.w.k.s.5.u.c.o.m
生产能力分组 | [100,110] | [110,120] | [120,130] | [130,140] | [140,150] |
人数 | 4 | 8 | x | 5 | 3 |
生产能力分组 | [110,120] | [120,130] | [130,140] | [140,150] |
人数 | 6 | y | 36 | 18 |
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
D
A
C
A
C
C
B
B
B
C
A
B
13. 2 14. 15. 16. ①②③
17.解:(1) (3分)
由题设,即
则当时, (5分)
(2)当时,
(8分)
由得即或
故m的取值范围是 (10分)
18.解析:(1)设表示事件“一个实验组中,服用A有效的小白鼠有只”,
表示事件“一个实验组中,服用B有效的小白鼠有只”
依题意有
所有的概率为
(6分)
(2)的可能值为0,1,2,3且.
的分布列为
0
1
2
3
P
数学期望 (12分)
19.(1)连接、,过M作,且交于点N.
在正中,又平面平面,易证平面,
在与中,
易知
即 (6分)
(2)过点M作垂足为E,连接EN,由(1)知平面(三垂线定理),即为二面角的平面角,由平面,知
在中,又
故在中,
故二面角的大小为 (12分)
20.解:(1)
(2分)
当时,
当时,此时函数递减;
当时,此时函数递增; (5分)
当时,取极小值,其极小值为0. (6分)
(2)由(1)可知函数和的图像在处有公共点,
因此若存在和的隔离直线,则该直线过这个公共点.
设隔离直线的斜率为则直线方程为即
由可得当时恒成立
由得 (8分)
下面证明当时恒成立.
令则
当时,
当时,此时函数递增;
当时,此时函数递减;
当时,取极大值,其极大值为0. (10分)
从而即恒成立.
函数和存在唯一的隔离直线 (12分)
21.(1)椭圆C: (1分)
直线 (2分)
由得 (3分)
设则
则 (5分)
若存在K,使M为AB的中点,M为ON的中点,
,
即N点坐标为 (6分)
由N点在椭圆,则
即或舍
故存在使 (8分)
(2)
即
且 (12分)
22.解:(1)
又
(4分)
是首项为2,公差为1的等差数列.
(2)
(8分)
(3)
(12分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com