解:(1)设椭圆的方程为.由已知.得.解得 查看更多

 

题目列表(包括答案和解析)

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(I)求椭圆的方程;

(II)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足O为坐标原点),当 时,求实数的取值范围.

【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。

第一问中,利用

第二问中,利用直线与椭圆联系,可知得到一元二次方程中,可得k的范围,然后利用向量的不等式,表示得到t的范围。

解:(1)由题意知

 

查看答案和解析>>

已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。

【解析】解:因为第一问中,利用椭圆的性质由   所以椭圆方程可设为:,然后利用

    

      椭圆方程为

第二问中,当为钝角时,,    得

所以    得

解:(Ⅰ)由   所以椭圆方程可设为:

                                       3分

    

      椭圆方程为             3分

(Ⅱ)当为钝角时,,    得   3分

所以    得

 

查看答案和解析>>

已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.

【解析】第一问利用设椭圆的方程为,由题意得

解得

第二问若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以.解得。

解:⑴设椭圆的方程为,由题意得

解得,故椭圆的方程为.……………………4分

⑵若存在直线满足条件的方程为,代入椭圆的方程得

因为直线与椭圆相交于不同的两点,设两点的坐标分别为

所以

所以

因为,即

所以

所以,解得

因为A,B为不同的两点,所以k=1/2.

于是存在直线L1满足条件,其方程为y=1/2x

 

查看答案和解析>>

已知曲线上动点到定点与定直线的距离之比为常数

(1)求曲线的轨迹方程;

(2)若过点引曲线C的弦AB恰好被点平分,求弦AB所在的直线方程;

(3)以曲线的左顶点为圆心作圆,设圆与曲线交于点与点,求的最小值,并求此时圆的方程.

【解析】第一问利用(1)过点作直线的垂线,垂足为D.

代入坐标得到

第二问当斜率k不存在时,检验得不符合要求;

当直线l的斜率为k时,;,化简得

第三问点N与点M关于X轴对称,设,, 不妨设

由于点M在椭圆C上,所以

由已知,则

由于,故当时,取得最小值为

计算得,,故,又点在圆上,代入圆的方程得到.  

故圆T的方程为:

 

查看答案和解析>>

如图,分别是椭圆+=1()的左、右焦点,是椭圆的顶点,是直线与椭圆的另一个交点,=60°.

(Ⅰ)求椭圆的离心率;

(Ⅱ)已知△的面积为40,求的值.

【解析】 (Ⅰ)由题=60°,则,即椭圆的离心率为

(Ⅱ)因△的面积为40,设,又面积公式,又直线

又由(Ⅰ)知,联立方程可得,整理得,解得,所以,解得

 

查看答案和解析>>


同步练习册答案