题目列表(包括答案和解析)
椭圆C以抛物线的焦点为右焦点,且经过点A(2,3).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若分别为椭圆的左右焦点,求的角平分线所在直线的方程.
椭圆C以抛物线的焦点为右焦点,且经过点A(2,3).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若分别为椭圆的左右焦点,求的角平分线所在直线的方程.
已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。
【解析】解:因为第一问中,利用椭圆的性质由得 所以椭圆方程可设为:,然后利用
得得
椭圆方程为
第二问中,当为钝角时,, 得
所以 得
解:(Ⅰ)由得 所以椭圆方程可设为:
3分
得得
椭圆方程为 3分
(Ⅱ)当为钝角时,, 得 3分
所以 得
(本小题满分16分)已知圆:交轴于两点,曲线是以为长轴,直线:为准线的椭圆.(1)求椭圆的标准方程;(2)若是直线上的任意一点,以为直径的圆与圆相交于两点,求证:直线必过定点,并求出点的坐标;(3)如图所示,若直线与椭圆交于两点,且,试求此时弦的长.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com