(3)由.得. 查看更多

 

题目列表(包括答案和解析)

由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:

(1)指出这组数据的众数和中位数;

(2)若视力测试结果不低于5.0,则称为“good sight”,若校医从“good sight”,中随机选取2人,试求抽到视力有5.2的学生的概率。

 

 

查看答案和解析>>

由坐标原点O向函数y=x3 -3x2的图象W引切线l1,切点P1(x1,y1) (P1,O不重合),再由点P1引W的切线l2,切点为P2(x2,y2) (P1, P2不重合),…,如此继续下去得到点列{Pn(xn,yn)}.

(1)求x1的值;

(2)求xnxn+1满足的关系式;

(3)求的值。

查看答案和解析>>

由下列不等式:,你能得到一个怎样的一般不等式?并加以证明。

【解析】本试题主要考查了合情推理的数学思想,关键是观察到表达式的特点,以及运用数学归纳法证明不等式的重要的数学思想。

 

查看答案和解析>>

 

,轮船位于港口O北偏西且与该港口相距20海里的A处,并以30海里/小时的航行速度沿正东方向匀速行驶。假设该小船沿直线方向以海里/小时的航行速度匀速行驶,经过t小时与轮船相遇。

(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?

(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向与航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由。

 

 

查看答案和解析>>

为常数,离心率为的双曲线上的动点到两焦点的距离之和的最小值为,抛物线的焦点与双曲线的一顶点重合。(Ⅰ)求抛物线的方程;(Ⅱ)过直线为负常数)上任意一点向抛物线引两条切线,切点分别为,坐标原点恒在以为直径的圆内,求实数的取值范围。

【解析】第一问中利用由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

第二问中,

故直线的方程为,即

所以,同理可得:

借助于根与系数的关系得到即是方程的两个不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得双曲线焦距为,离心率为,则长轴长为2,故双曲线的上顶点为,所以抛物线的方程

(Ⅱ)设

故直线的方程为,即

所以,同理可得:

是方程的两个不同的根,所以

由已知易得,即

 

查看答案和解析>>


同步练习册答案