∴ .∴ 所求椭圆方程为. 查看更多

 

题目列表(包括答案和解析)

,椭圆方程为,抛物线方程为.如图所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点

(1)求满足条件的椭圆方程和抛物线方程;

(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

,椭圆方程为,抛物线方程为.如图所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点

(1)求满足条件的椭圆方程和抛物线方程;

(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

 

查看答案和解析>>

,椭圆方程为,抛物线方程为.如图所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点

(1)求满足条件的椭圆方程和抛物线方程;

(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

,椭圆方程为,抛物线方程为.如图所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

已知椭圆方程为,其下焦点F1与抛物线x2=-4y的焦点重合,过F1的直线l与椭圆交于A、B两点,与抛物线交于C、D两点.当直线l与y轴垂直时,

(Ⅰ)求椭圆的方程;

(Ⅱ)求过点O、F1(其中O为坐标原点),且与直线(其中c为椭圆半焦距)相切的圆的方程;

(Ⅲ)求时直线l的方程,并求当斜率大于0时的直线l被(II)中的圆(圆心在第四象限)所截得的弦长.

查看答案和解析>>


同步练习册答案