当且仅当.即时等号成立.当时.. 查看更多

 

题目列表(包括答案和解析)

23、课本小结与复习的参考例题中,给大家分别用“综合法”,“比较法”和“分析法”证明了不等式:已知a,b,c,d都是实数,且a2+b2=1,c2+d2=1,则|ac+bd|≤1.这就是著名的柯西(Cauchy.法国)不等式当n=2时的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等号当且仅当ad=bc时成立.
请分别用中文语言和数学语言简洁地叙述柯西不等式,并用一种方法加以证明.

查看答案和解析>>

课本小结与复习的参考例题中,给大家分别用“综合法”,“比较法”和“分析法”证明了不等式:已知a,b,c,d都是实数,且a2+b2=1,c2+d2=1,则|ac+bd|≤1.这就是著名的柯西(Cauchy.法国)不等式当n=2时的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等号当且仅当ad=bc时成立.
请分别用中文语言和数学语言简洁地叙述柯西不等式,并用一种方法加以证明.

查看答案和解析>>

课本小结与复习的参考例题中,给大家分别用“综合法”,“比较法”和“分析法”证明了不等式:已知a,b,c,d都是实数,且a2+b2=1,c2+d2=1,则|ac+bd|≤1.这就是著名的柯西(Cauchy.法国)不等式当n=2时的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等号当且仅当ad=bc时成立.
请分别用中文语言和数学语言简洁地叙述柯西不等式,并用一种方法加以证明.

查看答案和解析>>

设向量
α
=(a,b),
β
=(m,n),其中a,b,m,n∈R,由不等式|
α
β
|≤|
α
|
•|
β
|恒成立,可以证明(柯西)不等式(am+bn)2≤(a2+b2)(m2+n2)(当且仅当
α
β
,即an=bm时等号成立),己知x,y∈R+,若
x
+3
y
<k•
x+y
恒成立,利用柯西不等式可求得实数k的取值范围是
 

查看答案和解析>>

已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.

【解析】第一问中,当时,.结合表格和导数的知识判定单调性和极值,进而得到最值。

第二问中,∵,      

∴原不等式等价于:,

, 亦即

分离参数的思想求解参数的范围

解:(Ⅰ)当时,

上变化时,的变化情况如下表:

 

 

1/e

时,

(Ⅱ)∵,      

∴原不等式等价于:,

, 亦即

∴对于任意的,原不等式恒成立,等价于恒成立,

∵对于任意的时, (当且仅当时取等号).

∴只需,即,解之得.

因此,的取值范围是

 

查看答案和解析>>


同步练习册答案