题目列表(包括答案和解析)
椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.
(1)求椭圆C的标准方程;
(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.
椭圆C的中心为原点, 右焦点F(,0), 以短轴的两端点及F为顶点的三角形恰为等边三角形.
(1)求椭圆C的标准方程;
(2)过椭圆C内的一点P(0,)作直线l交椭圆C于M、 N,求MN中点Q的轨迹方程;
(3)在(2)条件下,求△OMN的面积最大值.
x2 |
a2 |
y2 |
b2 |
| ||
2 |
3 |
2 |
2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com