(2)由得点M轨迹方程为(除去点). 查看更多

 

题目列表(包括答案和解析)

已知曲线C:
y2
m
+x2=1;
(1)由曲线C上任一点E向x轴作垂线,垂足为F,点P在
EF
上,且 
EP
=-
1
3
PF
.问:点P的轨迹可能是圆吗?请说明理由;
(2)如果直线l的斜率为
2
,且过点M(0,-2),直线l交曲线C于A,B两点,又
MA
MB
=-
9
2
,求曲线C的方程.

查看答案和解析>>

已知两定点E(-
2
,0),F(
2
,0)
,动点P满足
PE
PF
=0
,由点P向x轴作垂线PQ,垂足为Q,点M满足
PM
=(
2
-1)
MQ
,点M的轨迹为C.
(I)求曲线C的方程;
(II)若线段AB是曲线C的一条动弦,且|AB|=2,求坐标原点O到动弦AB距离的最大值.

查看答案和解析>>

下列推理:

①由为两个不同的定点,动点满足,得点的轨迹为双曲线

②由,求出猜想出数列的前项和的表达式

③由圆的面积,猜想出椭圆=1的面积

④科学家利用鱼的沉浮原理制造潜艇。其中是归纳推理的命题个数为   (   )

A.0               B.1              C.2            D.3

查看答案和解析>>

已知抛物线y2=2x,设A,B是抛物线上不重合的两点,且
OA
OB
OM
=
OA
+
OB
,O为坐标原点.
(1)若|
OA
|=|
OB
|
,求点M的坐标;
(2)求动点M的轨迹方程.

查看答案和解析>>

已知动点M到两个定点F1(-3,0),F2(3,0)的距离之和为10,A、B是动点M轨迹C上的任意两点.
(1)求动点M的轨迹C的方程;
(2)若原点O满足条件
AO
OB
,点P是C上不与A、B重合的一点,如果PA、PB的斜率都存在,问kPA•kPB是否为定值?若是,求出其值;若不是,请说明理由.

查看答案和解析>>


同步练习册答案