∴所求椭圆的方程为. -- 6分 查看更多

 

题目列表(包括答案和解析)

没椭圆数学公式的左、右焦点分别F1、F2,点P是椭圆短轴的一个端点,且焦距为6,△P F1F2的周长为16.
(I)求椭圆C的方程;
(Ⅱ)求过点(3,0)且斜率为数学公式的直线l被椭圆C所截线段的中点坐标.

查看答案和解析>>

没椭圆的左、右焦点分别F1、F2,点P是椭圆短轴的一个端点,且焦距为6,△P F1F2的周长为16.
(I)求椭圆C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线l被椭圆C所截线段的中点坐标.

查看答案和解析>>

设b>0,椭圆方程为=1,抛物线方程为x2=8(y-b).如图6所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点F1.

图6

(1)求满足条件的椭圆方程和抛物线方程.

(2)设A、B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

(本小题满分14分)

,椭圆方程为,抛物线方程为.如图6所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点

(1)求满足条件的椭圆方程和抛物线方程;

(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

(本小题满分14分)设,椭圆方程为,抛物线方程为.如图6所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点

(1)求满足条件的椭圆方程和抛物线方程;

(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>


同步练习册答案