题目列表(包括答案和解析)
EA |
EB |
EA |
EB |
已知曲线C:(m∈R)
(1) 若曲线C是焦点在x轴点上的椭圆,求m的取值范围;
(2) 设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。
【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是
(2)当m=4时,曲线C的方程为,点A,B的坐标分别为,
由,得
因为直线与曲线C交于不同的两点,所以
即
设点M,N的坐标分别为,则
直线BM的方程为,点G的坐标为
因为直线AN和直线AG的斜率分别为
所以
即,故A,G,N三点共线。
如图椭圆的右顶点是A,上下两个顶点分别为B,D,四边形OANB是矩形(O为原点),点E,M分别为线段OA,AN的中点.
(Ⅰ)证明:直线DE与直线BM的交点在椭圆C上;
(Ⅱ)若过点E的直线交椭圆于R,S两点,K为R关于x轴的对称点(R,K,E不共线),问:直线KS是否经过x轴上一定点,如果是,求这个定点的坐标,如果不是,说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com