由题设知 查看更多

 

题目列表(包括答案和解析)

设数列{an}是由1,2,3,4,5这5个数字组成无重复数字的五位数按从小到大的顺序排列得到的.

(1)已知an=54321,求n;

(2)求a96

(3)已知am=45132,求m;

(4)求Sn

查看答案和解析>>

设事件A发生的概率为P,若在A发生的条件下B发生的概率为P′,则由A产生B的概率为PP′,根据这一规律解答下题:一种掷硬币走跳棋的游戏:棋盘上有第0,1,2,3,…,100,共101站,设棋子跳到第n站的概率为Pn,一枚棋子开始在第0站(即P0=1),由棋手每掷一次硬币,棋子向前跳动一次,若硬币出现正面则棋子向前跳动一站,出现反面则向前跳动两站,直到棋子跳到第99站(获胜)或100站(失败)时,游戏结束.已知硬币出现正反面的概率都为
12

(1)求P1,P2,P3,并根据棋子跳到第n+1站的情况,试用Pn,Pn-1表示Pn+1
(2)设an=Pn-Pn-1(1≤n≤100),求证:数列{an}是等比数列,并求出{an}的通项公式;
(3)求玩该游戏获胜的概率.

查看答案和解析>>

设函数
(1)求函数y=T(sin(x))和y=sin(T(x))的解析式;
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①当x∈[0,]时,求y=Tn(x)的解析式;
已知下面正确的命题:当x∈[](i∈N*,1≤i≤2n-1)时,都有Tn(x)=Tn-x)恒成立.
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.

查看答案和解析>>

设函数
(1)求函数y=T(x2)和y=(T(x))2的解析式;
(2)是否存在实数a,使得T(x)+a2=T(x+a)恒成立,若存在,求出a的值,若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①当时,求y=T4(x)的解析式;
已知下面正确的命题:当时(i∈N*,1≤i≤15),都有恒成立.
②若方程T4(x)=kx恰有15个不同的实数根,确定k的取值;并求这15个不同的实数根的和.

查看答案和解析>>

是两个不共线的非零向量.

(1)若===,求证:ABD三点共线;

(2)试求实数k的值,使向量共线. (本小题满分13分)

【解析】第一问利用=()+()+==得到共线问题。

第二问,由向量共线可知

存在实数,使得=()

=,结合平面向量基本定理得到参数的值。

解:(1)∵=()+()+

==    ……………3分

     ……………5分

又∵ABD三点共线   ……………7分

(2)由向量共线可知

存在实数,使得=()   ……………9分

=   ……………10分

又∵不共线

  ……………12分

解得

 

查看答案和解析>>


同步练习册答案