又Q在椭圆C上.得. 查看更多

 

题目列表(包括答案和解析)

已知:点P是椭圆上的动点,F1、F2是该椭圆的左、右焦点。点Q满足是方向相同的向量,又
(1)求点Q的轨迹C的方程;
(2)是否存在该椭圆的切线l,使以l被曲线C截得的弦AB为直径的圆经过点F2?若存在,求出直线l的方程;若不存在,说明理由。

查看答案和解析>>

如图所示,点N在圆x2+y2=4上运动,DN⊥x轴,点M在DN的延长线上,且数学公式(λ>0).
(1)求点M的轨迹方程,并求当λ为何值时M的轨迹表示焦点在x轴上的椭圆;
(2)当数学公式时,(1)所得曲线记为C,已知直线数学公式,P是l上的动点,射线OP(O为坐标原点)交曲线C于点R,又点Q在OP上且满足|OQ|•|OP|=|OR|2,求点Q的轨迹方程.

查看答案和解析>>

如图所示,点N在圆x2+y2=4上运动,DN⊥x轴,点M在DN的延长线上,且(λ>0),
(1)求点M的轨迹方程,并求当λ为何值时M的轨迹表示焦点在x轴上的椭圆;
(2)当λ=时,(1)所得曲线记为C,已知直线l:+y=1,P是l上的动点,射线OP(O为坐标原点)交曲线C于点R,又点Q在OP上且满足|OQ|·|OP|=|OR|2,求点Q的轨迹方程。

查看答案和解析>>

如图所示,点N在圆x2+y2=4上运动,DN⊥x轴,点M在DN的延长线上,且(λ>0).
(1)求点M的轨迹方程,并求当λ为何值时M的轨迹表示焦点在x轴上的椭圆;
(2)当时,(1)所得曲线记为C,已知直线,P是l上的动点,射线OP(O为坐标原点)交曲线C于点R,又点Q在OP上且满足|OQ|•|OP|=|OR|2,求点Q的轨迹方程.

查看答案和解析>>

如图所示,点N在圆x2+y2=4上运动,DN⊥x轴,点M在DN的延长线上,且
DM
DN
(λ>0).
(1)求点M的轨迹方程,并求当λ为何值时M的轨迹表示焦点在x轴上的椭圆;
(2)当λ=
1
2
时,(1)所得曲线记为C,已知直线l:
x
2
+y=1
,P是l上的动点,射线OP(O为坐标原点)交曲线C于点R,又点Q在OP上且满足|OQ|•|OP|=|OR|2,求点Q的轨迹方程.

查看答案和解析>>


同步练习册答案