(为参数)消去参数得:把换成x,y.所求轨迹C′的方程为: ① 查看更多

 

题目列表(包括答案和解析)

双曲线高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。的一条渐近线为高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,由方程组高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,消去y,得高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。有唯一解,所以△=高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,

所以高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,高考资源网( www.ks5u.com),中国最大的高考网站,您身边的高考专家。,故选D. w.w.w.k.s.5.u.c.o.m    

答案:D.

【命题立意】:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.

查看答案和解析>>

过抛物线的对称轴上的定点,作直线与抛物线相交于两点.

(I)试证明两点的纵坐标之积为定值;

(II)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.

【解析】本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.

(1)中证明:设下证之:设直线AB的方程为: x=ty+m与y2=2px联立得消去x得y2=2pty-2pm=0,由韦达定理得 

 (2)中:因为三条直线AN,MN,BN的斜率成等差数列,下证之

设点N(-m,n),则直线AN的斜率KAN=,直线BN的斜率KBN=

  

KAN+KBN=+

本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.

 

查看答案和解析>>

在平面直角坐标系中,曲线的参数方程为

   是曲线上的动点.

  (1)求线段的中点的轨迹的直角坐标方程;

  (2) 以坐标原点为极点,轴的正半轴为极轴建立极坐标系,若直线的极坐标方程为,求点到直线距离的最大值.

【解析】第一问利用设曲线上动点,由中点坐标公式可得

所以点的轨迹的参数方程为

消参可得

第二问,由题可知直线的直角坐标方程为,因为原点到直线的距离为

所以点到直线的最大距离为

 

查看答案和解析>>

选做题(在(1)(2)中任选一题,若两题都做按第(1)题计分)
(1)如图,点P在圆O直径AB的延长线上,且PB=OB=2,PC切圆O于点C,CD⊥AB于点D,则CD=
3
3

(2)在直角坐标系中,参数方程为
x=2+
3
2
t
y=
1
2
t
 (t为参数)
的直线l,被以原点为极点、x轴的正半轴为极轴、极坐标方程为ρ=2cosθ的曲线C所截,则得的弦长是
3
3

查看答案和解析>>

在直角坐标系中,圆C的参数方程为
x=2cosθ
y=2+2sinθ
(θ为参数,θ∈[0,2π)),以原点O为极点,以x轴正半轴为极轴建立极坐标系,则圆C的圆心的极坐标为
(2,
π
2
)
(2,
π
2
)
.直线
x=-2+t
y=1-t
(t为参数)被圆C所截得的弦长为
0
0

查看答案和解析>>


同步练习册答案