圆心k到抛物线准线距离d=x0+≤a,而圆k半径R=≥a.且上两式不能同时取等号.故圆k必与准线相交. 查看更多

 

题目列表(包括答案和解析)

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(Ⅰ)求抛物线的方程;

(Ⅱ)当的角平分线垂直轴时,求直线的斜率;

(Ⅲ)若直线轴上的截距为,求的最小值.

 

查看答案和解析>>

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;

(2)当的角平分线垂直轴时,求直线的斜率;

(3)若直线轴上的截距为,求的最小值.

 

查看答案和解析>>

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线为E、F两点,圆心点到抛物线准线的距离为

(1)求抛物线的方程;

(2)当的角平分线垂直轴时,求直线的斜率;

(3)若直线轴上的截距为,求的最小值.

 

查看答案和解析>>

如图,已知抛物线和⊙,过抛物线上一点作两条直线与⊙相切于两点,分别交抛物线于两点,圆心点到抛物线准线的距离为

(Ⅰ)求抛物线的方程;

(Ⅱ)当的角平分线垂直轴时,求直线的斜率;

(Ⅲ)若直线轴上的截距为,求的最小值.

 

查看答案和解析>>

(2013•杭州一模)已知抛物线C:y2=2px(p>0)和⊙M:x2+y2+8x-12=0,过抛物线C上一点P(x0,y0)(y0≥0)作两条直线与⊙M相切与A、B两点,圆心M到抛物线准线的距离为
9
2

(Ⅰ)求抛物线C的方程;
(Ⅱ)当P点坐标为(2,2)时,求直线AB的方程;
(Ⅲ)设切线PA与PB的斜率分别为k1,k2,且k1•k2=
1
2
,求点P(x0,y0)的坐标.

查看答案和解析>>


同步练习册答案