(2)设直线AB上一点M满足证明:线段PM的中点在y轴上, 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xoy上,给定抛物线L:y=
1
4
x2.实数p,q满足p2-4q≥0,x1,x2是方程x2-px+q=0的两根,记φ(p,q)=max{|x1|,|x2|}.
(1)过点,A(p0
1
4
p02)(p0≠0),作L的切线交y轴于点B.证明:对线段AB上的任一点Q(p,q),有φ(p,q)=
|p0|
2

(2)设M(a,b)是定点,其中a,b满足a2-4b>0,a≠0.过M(a,b)作L的两条切线l1,l2,切点分别为E(p1
1
4
p
2
1
),E′(p2
1
4
p22),l1,l2与y轴分别交于F,F′.线段EF上异于两端点的点集记为X.证明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
|p1|
2

(3)设D={ (x,y)|y≤x-1,y≥
1
4
(x+1)2-
5
4
}.当点(p,q)取遍D时,求φ(p,q)的最小值 (记为φmin)和最大值(记为φmax

查看答案和解析>>

在平面直角坐标系xoy上,给定抛物线L:y=
1
4
x2.实数p,q满足p2-4q≥0,x1,x2是方程x2-px+q=0的两根,记φ(p,q)=max{|x1|,|x2|}.
(1)过点,A(p0
1
4
p02)(p0≠0),作L的切线交y轴于点B.证明:对线段AB上的任一点Q(p,q),有φ(p,q)=
|p0|
2

(2)设M(a,b)是定点,其中a,b满足a2-4b>0,a≠0.过M(a,b)作L的两条切线l1,l2,切点分别为E(p1
1
4
p21
),E′(p2
1
4
p22),l1,l2与y轴分别交于F,F′.线段EF上异于两端点的点集记为X.证明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
|p1|
2

(3)设D={ (x,y)|y≤x-1,y≥
1
4
(x+1)2-
5
4
}.当点(p,q)取遍D时,求φ(p,q)的最小值 (记为φmin)和最大值(记为φmax

查看答案和解析>>

在平面直角坐标系xOy上,给定抛物线L:y=x2,实数p,q满足p2-4q≥0,x1,x2是方程x2-px+q=0的两根,记φ(p,q)=max{|x1|,|x2|}.
(1)过点A(p0p0)(p0≠0)作L的切线教y轴于点B。证明:对线段AB上任一点Q(p,q)有φ(p,q)=
(2)设M(a,b)是定点,其中a,b满足a2-4b>0,a≠0。过M(a,b)作L的两条切线l1,l2,切点分别为E(p1p12),E′(p2p22),l1,l2与y轴分别交与F,F'。线段EF上异于两端点的点集记为X。证明:M(a,b)∈X|P1|>|P2|φ(a,b)=
(3)设D={(x,y)|y≤x-1,y≥(x+1)2-},当点(p,q)取遍D时,求φ(p,q)的最小值 (记为φmin)和最大值(记为φmax)。

查看答案和解析>>

(本小题满分14分)

       在平面直角坐标系xOy上,给定抛物线L:实数p,q满足,x1,x2是方程的两根,记

(1)过点作L的切线教y轴于点       B.证明:对线段AB上任一点Q(p,q)有

(2)设M(a,b)是定点,其中a,b满足a2-4b>0,a≠0.过M(a,b)作L的两条切线,切点分别为与y轴分别交与F,F'。线段EF上异于两端点的点集记为X.证明:M(a,b) X;

(3)设D={ (x,y)|y≤x-1,y≥(x+1)2-}.当点(p,q)取遍D时,求的最小值 (记为)和最大值(记为).

查看答案和解析>>

在平面直角坐标系xoy上,给定抛物线L:y=数学公式x2.实数p,q满足p2-4q≥0,x1,x2是方程x2-px+q=0的两根,记φ(p,q)=max{|x1|,|x2|}.
(1)过点,A(p0数学公式p02)(p0≠0),作L的切线交y轴于点B.证明:对线段AB上的任一点Q(p,q),有φ(p,q)=数学公式
(2)设M(a,b)是定点,其中a,b满足a2-4b>0,a≠0.过M(a,b)作L的两条切线l1,l2,切点分别为E(p1数学公式),E′(p2数学公式p22),l1,l2与y轴分别交于F,F′.线段EF上异于两端点的点集记为X.证明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=数学公式
(3)设D={ (x,y)|y≤x-1,y≥数学公式(x+1)2-数学公式}.当点(p,q)取遍D时,求φ(p,q)的最小值 (记为φmin)和最大值(记为φmax

查看答案和解析>>


同步练习册答案