(2)连接MB.MQ.设由点M.P.Q在一直线上.得 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,已知直线L:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线G:x=a2上的射影依次为点D,K,E,
(1)已知抛物线x2=4
3
y
的焦点为椭圆C的上顶点.
①求椭圆C的方程;
②若直线L交y轴于点M,且
MA
=λ1
AF
MB
=λ2
BF
,当m变化时,求λ12的值;
(2)连接AE,BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标并给予证明;否则说明理由.

查看答案和解析>>

在△OAB的边OA、OB上分别有一点P、Q,已知|
OP
|
|
PA
|
=1:2,|
OQ
|
|
QB
|
=3:2,连接AQ、BP,设它们交于点R,若
OA
=
a
OB
=
b

(Ⅰ)用
a
b
表示
OR

(Ⅱ)过R作RH⊥AB,垂足为H,若|
a
|=1,|
b
|=2,
a
b
的夹角θ∈[
π
3
3
]
,求
|
BH|
|
BA|
的范围.

查看答案和解析>>

选修4-1:几何证明选讲
如图设M为线段AB中点,AE与BD交于点C∠DME=∠A=∠B=α,且DM交AC于F,EM交BD于G.
(1)写出图中三对相似三角形,并对其中一对作出证明;
(2)连接FG,设α=45°,AB=4
2
,AF=3,求FG长.

查看答案和解析>>

如图,已知直线L:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线G:x=a2上的射影依次为点D,K,E.
(1)若抛物线x2=4
3
y的焦点为椭圆C的上顶点,求椭圆C的方程;
(2)连接AE,BD,证明:当m变化时,直线AE、BD相交于一定点.

查看答案和解析>>

已知直角坐标平面内的动点M满足:|MA|2-|MB|2=4(|MB|-1),其中A(0,-1),B(0,1).
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)过N(-2,1)作两条直线交(Ⅰ)中轨迹C于P,Q,并且都与“以A为圆心,r为半径的动圆”相切,求证:直线PQ经过定点.

查看答案和解析>>


同步练习册答案