题目列表(包括答案和解析)
已知函数的图像是自原点出发的一条折线,当时,该图像是斜率为的线段(其中正常数),设数列由定义.
Ⅰ.求、和的表达式;
Ⅱ.求的表达式,并写出其定义域;
Ⅲ.证明:的图像与的图像没有横坐标大于1的交点.
函数是定义在上的奇函数,且。
(1)求实数a,b,并确定函数的解析式;
(2)判断在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数是定义在上的奇函数,且。
解得,
(2)中,利用单调性的定义,作差变形判定可得单调递增函数。
(3)中,由2知,单调减区间为,并由此得到当,x=-1时,,当x=1时,
解:(1)是奇函数,。
即,,………………2分
,又,,,
(2)任取,且,
,………………6分
,
,,,,
在(-1,1)上是增函数。…………………………………………8分
(3)单调减区间为…………………………………………10分
当,x=-1时,,当x=1时,。
已知函数的图象是自原点出发的一条折线.当时,该图象是斜率为的线段(其中正常数),设数列由定义. 求:
求和的表达式;
求的表达式,并写出其定义域;
证明:的图像与的图象没有横坐标大于1的交点.
A
解析:由题意:等比数列{}有连续四项在集合{-54,-24,18,36,81}中,由等比数列的定义知,四项是两个正数,两个负数且|q|>1,故-24, 36, -54,81符合题意,则q=,6q=-9.
如图,是△的重心,、分别是边、上的动点,且、、三点共线.
(1)设,将用、、表示;
(2)设,,证明:是定值;
(3)记△与△的面积分别为、.求的取值范围.
(提示:
【解析】第一问中利用(1)
第二问中,由(1),得;①
另一方面,∵是△的重心,
∴
而、不共线,∴由①、②,得
第三问中,
由点、的定义知,,
且时,;时,.此时,均有.
时,.此时,均有.
以下证明:,结合作差法得到。
解:(1)
.
(2)一方面,由(1),得;①
另一方面,∵是△的重心,
∴. ②
而、不共线,∴由①、②,得
解之,得,∴(定值).
(3).
由点、的定义知,,
且时,;时,.此时,均有.
时,.此时,均有.
以下证明:.(法一)由(2)知,
∵,∴.
∵,∴.
∴的取值范围
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com