解:(1)设椭圆方程为 查看更多

 

题目列表(包括答案和解析)

设椭圆C:数学公式(a>b>0)的一个顶点坐标为A(数学公式),且其右焦点到直线数学公式的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(数学公式),求证点M的所有“相关弦”的中点在同一条直线上;
(3)根据解决问题(2)的经验与体会,请运用类比、推广等思想方法,提出一个与“相关弦”有关的具有研究价值的结论,并加以解决.(本小题将根据所提出问题的层次性给予不同的分值)

查看答案和解析>>

设椭圆C:(a>b>0)的一个顶点坐标为A(),且其右焦点到直线的距离为3.
(1)求椭圆C的轨迹方程;
(2)若A、B是椭圆C上的不同两点,弦AB(不平行于y轴)的垂直平分线与x轴相交于点M,则称弦AB是点M的一条“相关弦”,如果点M的坐标为M(),求证点M的所有“相关弦”的中点在同一条直线上;
(3)根据解决问题(2)的经验与体会,请运用类比、推广等思想方法,提出一个与“相关弦”有关的具有研究价值的结论,并加以解决.(本小题将根据所提出问题的层次性给予不同的分值)

查看答案和解析>>

设椭圆的左、右顶点分别为,点在椭圆上且异于两点,为坐标原点.

(Ⅰ)若直线的斜率之积为,求椭圆的离心率;

(Ⅱ)若,证明直线的斜率 满足

【解析】(1)解:设点P的坐标为.由题意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以椭圆的离心率

(2)证明:(方法一)

依题意,直线OP的方程为,设点P的坐标为.

由条件得消去并整理得  ②

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依题意,直线OP的方程为,设点P的坐标为.

由P在椭圆上,有

因为,所以,即   ③

,得整理得.

于是,代入③,

整理得

解得

所以.

 

查看答案和解析>>

设椭圆(常数)的左右焦点分别为是直线上的两个动点,

(1)若,求的值;

(2)求的最小值.

【解析】第一问中解:设

    由,得

  ② 

第二问易求椭圆的标准方程为:

所以,当且仅当时,取最小值

解:设 ……………………1分

,由     ①……2分

(1)由,得  ②   ……………1分

    ③    ………………………1分

由①、②、③三式,消去,并求得. ………………………3分

(2)解法一:易求椭圆的标准方程为:.………………2分

, ……4分

所以,当且仅当时,取最小值.…2分

解法二:, ………………4分

所以,当且仅当时,取最小值

 

查看答案和解析>>

已知椭圆C1
x=2cosθ
y=sinθ
(θ为参数),椭圆C2以C1的长轴为短轴,且与C1有相同的离心率
(1)求椭圆C2的普通方程
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,
OB
=2
OA
,求直线AB的方程.《用参数方程的知识求解》

查看答案和解析>>


同步练习册答案