(Ⅱ)设.且平面PAM.则 查看更多

 

题目列表(包括答案和解析)

设⊙O为不等边△ABC的外接圆,△ABC内角A,B,C所对边的长分别为a,b,c,P是△ABC所在平面内的一点,且满足
PA
PB
=
c
b
PA
PC
+
b-c
b
PA2
(P与A不重合).Q为△ABC所在平面外一点,QA=QB=QC.有下列命题:
①若QA=QP,∠BAC=90°,则点Q在平面ABC上的射影恰在直线AP上;
②若QA=QP,则
QP
PB
=
QP
PC

③若QA>QP,∠BAC=90°,则
BP
CP
=
AB
AC

④若QA>QP,则P在△ABC内部的概率为
S△ABC
S⊙O
(S△ABC,S⊙O分别表示△ABC与⊙O的面积).
其中不正确的命题有
 
(写出所有不正确命题的序号).

查看答案和解析>>

已知四棱锥P-ABCD的底面是边长为4的正方形,PD⊥底面ABCD,PD=6,M,N分别为PB,AB的中点,设AC和BD相交于点O
(Ⅰ)证明:OM∥底面PAD;
(Ⅱ)若DF⊥PA且交PA于F点,证明DF⊥平面PAB;
(Ⅲ)求四面体D-MNB的体积

查看答案和解析>>

精英家教网如图,
ADB
为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(1)建立适当的平面直角坐标系,求曲线C的方程;
(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设
DM
DN
=λ,求λ的取值范围.

查看答案和解析>>

16、如图,四棱锥P-ABCD中,底面ABCD为棱形,∠DAB=60°,平面PCD⊥底面ABCD,E、F分别是CD、AB的中点.
(1)求证:BE⊥平面PCD.
(2)设G为棱PA上一点,且PG=2GA,求证:PC∥平面DGF.

查看答案和解析>>

如图,ADB为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变
(1)建立适当的平面直角坐标系,求曲线C的方程;
(2)过D点的直线l与曲线C相交于不同的两点M、N,且M在D、N之间,设
|DM||DN|
=λ,求λ的取值范围.

查看答案和解析>>


同步练习册答案