即二面角的大小为 . ------8分 (3) 分别取AD , BC中点E , F ,作平面PEF , 交底面与两点S , S1 , 交B1C1于点B2 , 过点B2作B2B3⊥PS于点B3 , 则 B2B3⊥面PAD , 又 B1C1∥AD ,∴B2B3的长就是点B1到平面PAD 的距离 . ------10分 查看更多

 

题目列表(包括答案和解析)

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>

如图,在直三棱柱(即侧棱与底面垂直的三棱柱)中,

(I)若的中点,求证:平面平面

(II)若为线段上一点,且二面角的大小为,试确定的位置.

 

查看答案和解析>>

四棱锥P-ABCD中,PA⊥面ABCD,PA=AB=BC=2,E为PA中点,过E作平行于底面的面EFGH分别与另外三条侧棱交于F,G,H,已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°
(1)求异面直线AF,BG所成的角的大小;
(2)设面APB与面CPD所成的锐二面角的大小为θ,求cosθ.

查看答案和解析>>

如图,平面PAC⊥平面ABC,AC⊥BC,△PAC为等边三角形,PE∥CB,M,N分别是线段AE,AP上的动点,且满足:
AM
AE
=
AN
AP
=λ(0<λ<1).
(Ⅰ)求证:MN∥平面ABC;
(Ⅱ)求λ的值,使得平面ABC与平面MNC所成的锐二面角的大小为45°.

查看答案和解析>>

如图,椭圆
x2
16
+
y2
12
=1
的长轴为A1A2,短轴为B1B2,将坐标平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为
π
3
π
3

查看答案和解析>>


同步练习册答案