题目列表(包括答案和解析)
已知,,分别为三个内角,,的对边,.
(Ⅰ)求;
(Ⅱ)若=2,的面积为,求,.
【命题意图】本题主要考查正余弦定理应用,是简单题.
【解析】(Ⅰ)由及正弦定理得
由于,所以,
又,故.
(Ⅱ) 的面积==,故=4,
而 故=8,解得=2
已知
,且,…,组成等差数列(n为正偶数),又,.(1)
求数列的通项;(2)试比较与3的大小,并说明理由.由所有既属于集合A又属于集合B的元素所成的集合,叫做A与B的________,记作A∩B,即A∩B={x|x∈A,且x∈B}.
可这样理解:交集A∩B是由两集合A与B的“公有”元素所组成的集合.用Venn图表示,如图.
易知:(1)若两集合A与B无公共关系,则A∩B=________;
(2)A∩B________A,A∩B________B;
(3)A∩A=________,A∩=________,A∩B=B∩A;
(4)若AB,则A∩B=________;若A∩B=A,则A________B;
(5)设U为全集,则A∩(A)=________.
已知,且,…,组成等差数列(n为正偶数),又,.
(1)求数列的通项;(2)试比较与3的大小,并说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com