即所以即平面与平面所成的二面角的大小为 .........................................................4分 查看更多

 

题目列表(包括答案和解析)

下列说法错误的是(    )

A.过二面角的棱上某一特殊点,分别在两个半平面内引垂直于棱的射线,则这两条射线所成的角即为二面角的平面角

B.和二面角的棱垂直的平面与二面角的两个半平面的交线所成的角即为二面角的平面角

C.在二面角的一个面内引棱的垂线,该垂线与其在另一面内的射影所成的角是二面角的平面角

D.二面角的平面角可以是一个锐角、一个直角或一个钝角

查看答案和解析>>

下列说法错误的是(    )

A.过二面角的棱上某一特殊点,分别在两个半平面内引垂直于棱的射线,则这两条射线所成的角即为二面角的平面角

B.和二面角的棱垂直的平面与二面角的两个半平面的交线所成的角即为二面角的平面角

C.在二面角的一个面内引棱的垂线,该垂线与其在另一面内的射影所成的角是二面角的平面角

D.二面角的平面角可以是一个锐角、一个直角或一个钝角

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

如图6,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD.

(Ⅰ)证明:BD⊥PC;

(Ⅱ)若AD=4,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.

【解析】(Ⅰ)因为

是平面PAC内的两条相较直线,所以BD平面PAC,

平面PAC,所以.

(Ⅱ)设AC和BD相交于点O,连接PO,由(Ⅰ)知,BD平面PAC,

所以是直线PD和平面PAC所成的角,从而.

由BD平面PAC,平面PAC,知.在中,由,得PD=2OD.因为四边形ABCD为等腰梯形,,所以均为等腰直角三角形,从而梯形ABCD的高为于是梯形ABCD面积

在等腰三角形AOD中,

所以

故四棱锥的体积为.

【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD平面PAC即可,第二问由(Ⅰ)知,BD平面PAC,所以是直线PD和平面PAC所成的角,然后算出梯形的面积和棱锥的高,由算得体积

 

查看答案和解析>>

如图,三棱锥中,侧面底面, ,且,.(Ⅰ)求证:平面;

(Ⅱ)若为侧棱PB的中点,求直线AE与底面所成角的正弦值.

【解析】第一问中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,又EH//PO,所以EH平面ABC ,

为直线AE与底面ABC 所成角,

 (Ⅰ) 证明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,

因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,

又EH//PO,所以EH平面ABC ,

为直线AE与底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已证平面PBC,所以,即,

,

于是

所以直线AE与底面ABC 所成角的正弦值为

 

查看答案和解析>>


同步练习册答案